\begin{align*}
&\exists m \left[X=\frac{16m^2}{4m^2+1} \land Y=m(X-4)\land m^2<\frac{1}{12}\right]\\
\Longleftrightarrow~&\exists m\left[X=\frac{16m^2}{4m^2+1} \land Y=m(X-4)\land m^2<\frac{1}{12} \land (X=4 \lor X \neq 4)\right]\\
\Longleftrightarrow~&\exists m\left[\left(X=\frac{16m^2}{4m^2+1} \land Y=m(X-4)\land m^2<\frac{1}{12} \land X=4 \right)\right.\\
&\lor \left.\left(X=\frac{16m^2}{4m^2+1} \land Y=m(X-4)\land m^2<\frac{1}{12} \land X \neq 4\right)\right]\\
\Longleftrightarrow~&\exists m\left[X=\frac{16m^2}{4m^2+1} \land m=\frac{Y}{X-4}\land m^2<\frac{1}{12} \land X \neq 4\right]\tag{0}\\
\Longleftrightarrow~&X=\frac{16\left(\frac{Y}{X-4}\right)^2}{4\left(\frac{Y}{X-4}\right)^2+1} \land \left(\frac{Y}{X-4}\right)^2<\frac{1}{12} \land X \neq 4\\
\Longleftrightarrow~&\frac{(X-2)^2}{4}+Y^2 = 1 \land \left|\frac{Y}{X-4}\right|<\frac{1}{\sqrt{12}} \land X \neq 4\\
\Longleftrightarrow~&\frac{(X-2)^2}{4}+Y^2 = 1 \land |Y|<\frac{1}{\sqrt{12}}|X-4| \land X \neq 4\\
\Longleftrightarrow~&\frac{(X-2)^2}{4}+Y^2 = 1 \land 0 \leq X < 1 \land X \neq 4 &\tag{\(\ast\)}\\
\Longleftrightarrow~&\frac{(X-2)^2}{4}+Y^2 = 1 \land 0 \leq X < 1\\
\end{align*}
\((\ast)\)は下図による.
\((0)\)以降の別変形はこちら.