先生であるために

教える側こそ,生徒以上に勉強しなければならない.指導する側が生徒以上の学びを「現在進行形で」行ってはじめて指導者は指導者たり得る.これが僕の信条です.昨年,数学検定1級を取得したひとつの理由がこれでした.

生徒にとっての「先生」であり続けるために,次の数学の目標を設定したいと思います.数学検定1級の上があればそれを目指すんだけど,現在,数学検定は1級が最高級(でも昔は「段位」まであったらしい・・・!).数学書の読破,でもいいけどその習熟具合を客観的に測るものがないので,目標としてはちょっと弱い(趣味・教養の色合いがどうしても強くなってしまう).そこで,数学関係の資格を調べると「統計検定」なるものがあります.今度はこの「統計検定」にチャレンジしてみようと思う.これは2級から大学教養レベルで,1級は完全に大学専門レベルになるようだ.まさにチャレンジしがいがある.大学時代学びそこなった(=ついていけなかった笑)数理統計学にリベンジしたいという思いもある.

このような検定などを通した学びの目的は,「スキルアップ」「自己実現」だけではない.試験とその対策という実体験を通して生徒の気持ちが痛いほどよくわかるようになるという強烈な副産物がある.未知の概念や記号に圧倒される恐怖感,理解しきれず前へ進めないときの絶望感と孤独感,成長が感じられないとき試験に落ちたときの虚無感.他方,新たな知識と理解を得たときの達成感や有能感,手を動かし練習に明け暮れたあとの心地よい疲労感,そして合格したときの喜び.

教える側として「生徒の気持ちを知る」とは,こういうことだと思う.

生徒の見本となるよう,統計検定1級を取得しようと思います!

相関係数

\(n\)個のデータ\(x_1,x_2,\cdots,x_n\),\(y_1,y_2,\cdots,y_n\)(それぞれ平均を\(\mu,\lambda\)とする)の相関係数\(\rho(x,y)\)がなぜ$$-1\leq\rho(x,y)\leq1$$なのか,質問を受けたので,このブログでの数式表示の練習も兼ねて書いてみようと思います.

(証明)
天下り的ではあるが,まず,2つのベクトル$$\vec{u}=(x_1-\mu,x_2-\mu,\cdots,x_n-\mu),~\vec{v}=(y_1-\lambda,y_2-\lambda,\cdots,y_n-\lambda)$$を用意し,これらの内積を考える.すると,
$$
\begin{align}
\vec{u}\cdot\vec{v}&=(x_1-\mu)(y_1-\lambda)\cdots(x_n-\mu)(y_n-\lambda)\\
&=\sum_{k=0}^{n}(x_k-\mu)(y_k-\lambda)\\
\end{align}
$$
となる.他方,\(\vec{u}\cdot\vec{v}\)は,内積の公式(高校教科書では「定義」)より

$$
\begin{align}
\vec{u}\cdot\vec{v}&=\sqrt{(x_1-\mu)^2+(x_2-\mu)^2+\cdots+(x_n-\mu)^2}\sqrt{(y_1-\lambda)^2+(y_2-\lambda)^2+\cdots+(y_n-\lambda)^2}\cos\theta\\
&=\sqrt{\sum_{k=0}^{n}(x_k-\mu)^2}\sqrt{\sum_{k=0}^{n}(y_k-\lambda)^2}\cos\theta\\
\end{align}
$$

ゆえに,
$$\cos\theta=\frac{\vec{u}\cdot\vec{v}}{\sqrt{\sum_{k=0}^{n}(x_k-\mu)^2}\sqrt{\sum_{k=0}^{n}(y_k-\lambda)^2}}$$
を得る.\(-1\leq\cos\theta\leq1\)であるから,上式は
$$-1\leq\frac{\vec{u}\cdot\vec{v}}{\sqrt{\sum_{k=0}^{n}(x_k-\mu)^2}\sqrt{\sum_{k=0}^{n}(y_k-\lambda)^2}}\leq1$$
である.前半に得た式をこの不等式に代入すれば,
$$-1\leq\frac{\sum_{k=0}^{n}(x_k-\mu)(y_k-\lambda)}{\sqrt{\sum_{k=0}^{n}(x_k-\mu)^2}\sqrt{\sum_{k=0}^{n}(y_k-\lambda)^2}}\leq1$$
分母分子を\(\frac{1}{n}\)で割って,
$$-1\leq\frac{\frac{1}{n}\sum_{k=0}^{n}(x_k-\mu)(y_k-\lambda)}{\frac{1}{n}\sqrt{\sum_{k=0}^{n}(x_k-\mu)^2}\sqrt{\sum_{k=0}^{n}(y_k-\lambda)^2}}\leq1\\
-1\leq\frac{\frac{1}{n}\sum_{k=0}^{n}(x_k-\mu)(y_k-\lambda)}{\sqrt{\frac{1}{n}\sum_{k=0}^{n}(x_k-\mu)^2}\sqrt{\frac{1}{n}\sum_{k=0}^{n}(y_k-\lambda)^2}}\leq1$$
すなわち
$$-1\leq\frac{Cov(x,y)}{\sigma(x)\sigma(y)}\leq1$$
よって,$$-1\leq\rho(x,y)\leq1$$を得る.(証明終)

結構疲れます^^;
ベクトルを使って統計の性質を証明するなんて,面白いです.

佐々木数学塾について。

地元気仙沼で数学塾を開校することになりました。これまで自分が学び,経験してきたことを地元の子供たちに伝えることができればと思います。数学ができるって,一言で言えば,かっこいい。その「かっこよさ」を伝えたい。というか,生徒と共有したい。成績や受験も大事だけど,数学特有のスマートさを感じて欲しい。まず最初にそんな思いがある。もちろん,それは「かっこいい」という自己満足だけじゃない。「かっこいい」数学というのは,結果的に,成績や受験に直結する。だって,「かっこよさ」こそがほんとうの「数学」なんだから。

一緒に数学を学びましょう!

© 2023 佐々木数学塾, All rights reserved.