ベクトルの外積

外積を定義します.

外積

    1. \(\overrightarrow{a}\)と\(\overrightarrow{b}\)に対して垂直で,
    2. その向きが,\(\overrightarrow{a}\)から\(\overrightarrow{b}\)へねじを回したときにねじが進む向きと一致し,
    3. その大きさが,\(\overrightarrow{a}\)と\(\overrightarrow{b}\)が作る平行四辺形の面積と一致する

ようなベクトルを「外積(outer product)」と呼び,\[\overrightarrow{a}\times \overrightarrow{b}\]と表す.

ことにします.上図の赤いベクトルですね.定義しただけでは役に立たないので,実際にこの外積を求めてみましょう.\(\overrightarrow{a}=(a_1,~a_2,~a_3),~\overrightarrow{b}=(b_1,~b_2,~b_3)\)とおくことにします.

まず,\(\overrightarrow{a}\)は基本ベクトル\(\overrightarrow{e_1}=(1,~0,~0),~\overrightarrow{e_2}=(0,~1,~0),~\overrightarrow{e_3}=(0,~0,~1)\)を用いて,
\[
\begin{align*}
\overrightarrow{a}=
&\left(
\begin{array}{c}
a_1\\
a_2\\
a_3
\end{array}
\right)
=
\left(
\begin{array}{c}
a_1\\
0\\
0
\end{array}
\right)
+
\left(
\begin{array}{c}
0\\
a_2\\
0
\end{array}
\right)
+
\left(
\begin{array}{c}
0\\
0\\
a_3
\end{array}
\right)\\
&=a_1\left(
\begin{array}{c}
1\\
0\\
0
\end{array}
\right)
+
a_2\left(
\begin{array}{c}
0\\
1\\
0
\end{array}
\right)
+
a_3\left(
\begin{array}{c}
0\\
0\\
1
\end{array}
\right)\\
&=a_1\overrightarrow{e_1}+a_2\overrightarrow{e_2}+a_3\overrightarrow{e_3}
\end{align*}
\]

と\(e_1,~e_2,~e_3\)の1次結合で表すことができます.同様にして

\[\overrightarrow{b}=b_1\overrightarrow{e_1}+b_2\overrightarrow{e_2}+b_3\overrightarrow{e_3}\]

したがって外積\(\overrightarrow{a}\times\overrightarrow{b}\)は

\[\overrightarrow{a}\times\overrightarrow{b}=(a_1\overrightarrow{e_1}+a_2\overrightarrow{e_2}+a_3\overrightarrow{e_3})\times(b_1\overrightarrow{e_1}+b_2\overrightarrow{e_2}+b_3\overrightarrow{e_3})\]

と書けることになります.これを「計算」してみればよい.しかしここでひとつ問題があります.「\(\times\)」に関する計算法則を,まだ私たちはなにも知りません(普段使っている「掛ける」とは見た目が同じだけで別物です).したがって,まずこの「\(\times\)」がどのような計算法則を持つのか,調べなくてはなりません.

結論から先に述べますと,

\[
\begin{align*}
&\overrightarrow{a}\times\overrightarrow{b}=-\overrightarrow{b}\times\overrightarrow{a}\tag{A}\\
&k(\overrightarrow{a}\times \overrightarrow{b})=(k\overrightarrow{a})\times \overrightarrow{b}=\overrightarrow{a}\times (k\overrightarrow{b})\tag{B}\\
&\overrightarrow{a}\times(\overrightarrow{b}+\overrightarrow{c})=\overrightarrow{a}\times\overrightarrow{b}+\overrightarrow{a}\times\overrightarrow{c}\tag{C}
\end{align*}
\]

が成り立ちます(\(\mathrm{(A)}\)は定義より明らか.\(\mathrm{(B)}\),\(\mathrm{(C)}\)).注意したいのは,1つ目,「交換するとマイナスがつく」ということです.外積という新しい定義を導入したわけですから,当然,これまでの常識(交換法則)が通用するとは限らないわけです.

では,これらの計算法則に従って,計算してみましょう(実際に紙に書いて手を動かしてみることをおすすめします).

\[
\begin{align*}
&~\overrightarrow{a}\times\overrightarrow{b}\\
=&~(a_1\overrightarrow{e_1}+a_2\overrightarrow{e_2}+a_3\overrightarrow{e_3})\times(b_1\overrightarrow{e_1}+b_2\overrightarrow{e_2}+b_3\overrightarrow{e_3})\\
=&~a_1\overrightarrow{e_1}\times b_1\overrightarrow{e_1}+a_1\overrightarrow{e_1}\times b_2\overrightarrow{e_2}+a_1\overrightarrow{e_1}\times b_3\overrightarrow{e_3}\\
&+a_2\overrightarrow{e_2}\times b_1\overrightarrow{e_1}+a_2\overrightarrow{e_2}\times b_2\overrightarrow{e_2}+a_2\overrightarrow{e_2}\times b_3\overrightarrow{e_3}\\
&+a_3\overrightarrow{e_3}\times b_1\overrightarrow{e_1}+a_3\overrightarrow{e_3}\times b_2\overrightarrow{e_2}+a_3\overrightarrow{e_3}\times b_3\overrightarrow{e_3}\\
=&~a_1b_1(\overrightarrow{e_1}\times \overrightarrow{e_1})+a_1b_2(\overrightarrow{e_1}\times \overrightarrow{e_2})+a_1b_3(\overrightarrow{e_1}\times \overrightarrow{e_3})\\
&+a_2b_1(\overrightarrow{e_2}\times \overrightarrow{e_1})+a_2b_2(\overrightarrow{e_2}\times \overrightarrow{e_2})+a_2b_3(\overrightarrow{e_2}\times \overrightarrow{e_3})\\
&+a_3b_1(\overrightarrow{e_3}\times \overrightarrow{e_1})+a_3b_2(\overrightarrow{e_3}\times \overrightarrow{e_2})+a_3b_3(\overrightarrow{e_3}\times \overrightarrow{e_3})
\end{align*}
\]

ここで,

\[
\begin{align*}
&\overrightarrow{e_1}\times\overrightarrow{e_1}=\overrightarrow{e_2}\times\overrightarrow{e_2}=\overrightarrow{e_3}\times\overrightarrow{e_3}=\overrightarrow{0} \\
&\overrightarrow{e_1}\times\overrightarrow{e_2}=\overrightarrow{e_3},\quad\overrightarrow{e_1}\times\overrightarrow{e_3}=-\overrightarrow{e_2}\\
&\overrightarrow{e_2}\times\overrightarrow{e_1}=-\overrightarrow{e_3},\quad\overrightarrow{e_2}\times\overrightarrow{e_3}=\overrightarrow{e_1}\\
&\overrightarrow{e_3}\times\overrightarrow{e_1}=\overrightarrow{e_2},\quad\overrightarrow{e_3}\times\overrightarrow{e_2}=-\overrightarrow{e_1}
\end{align*}
\]

ですから(なぜ?),結局外積\(\overrightarrow{a}\times\overrightarrow{b}\)は
\[
\begin{align*}
\overrightarrow{a}\times\overrightarrow{b}
=&~a_1b_1\cdot \overrightarrow{0}+a_1b_2\overrightarrow{e_3} -a_1b_3\overrightarrow{e_2}\\
&-a_2b_1\overrightarrow{e_3}+a_2b_2\cdot \overrightarrow{0}+a_2b_3\overrightarrow{e_1}\\
&+a_3b_1\overrightarrow{e_2}-a_3b_2\overrightarrow{e_1}+a_3b_3\cdot \overrightarrow{0}\\
=&~(a_2b_3-a_3b_2)\overrightarrow{e_1}+(a_3b_1-a_1b_3)\overrightarrow{e_2}+(a_1b_2-a_2b_1)\overrightarrow{e_3}\\
=&~(a_2b_3-a_3b_2)\left(
\begin{array}{c}
1\\
0\\
0
\end{array}
\right)
+
(a_3b_1-a_1b_3)\left(
\begin{array}{c}
0\\
1\\
0
\end{array}
\right)
+
(a_1b_2-a_2b_1)\left(
\begin{array}{c}
0\\
0\\
1
\end{array}
\right)\\
=&~\left(
\begin{array}{c}
a_2b_3-a_3b_2\\
a_3b_1-a_1b_3\\
a_1b_2-a_2b_1\\
\end{array}
\right)
\end{align*}
\]

を得ます.この結果は覚えておくとよいでしょう.以下のように覚えるのがおすすめです.

\[\overrightarrow{a}\times\overrightarrow{b}=\left(
\begin{array}{c}
a_2b_3-a_3b_2\\
a_3b_1-a_1b_3\\
a_1b_2-a_2b_1\\
\end{array}
\right)\]

内積(inner product)と言葉自体は似ているのですが,内積はスカラー量であるのに対して,外積はベクトル量であることに注意してください.

注意
高校数学においても垂直なベクトルを求めるシーンは多いのですが,高校範囲外なので,テストや模試等では検算にとどめておくのが無難かも知れません.

正射影ベクトル

ここに始点が揃った2つのベクトル\(\vec{a}\)と\(\vec{b}\)があります.\(\vec{a}\)による\(\vec{b}\)への落とした影となるベクトルを,「\(\vec{a}\)の正射影ベクトル」と呼びます.この\(\vec{a}\)の正射影ベクトルを求めてみましょう.

まず,\(\vec{b}\)と同じ向きの単位ベクトル\(\frac{\vec{b}}{|\vec{b}|}\)(下図青のベクトル)が1目盛りになるような軸(下図赤の軸)を設定します.このとき,正射影ベクトルの終点が指し示す場所の座標はいくらになるでしょうか.三角比の公式より,\(|\vec{a}|\cos\theta\)ですね.これは\(\theta\)が鈍角のときも成り立ちます.\[\text{正射影ベクトルの終点が指し示す座標は,}|\vec{a}|\cos\theta\text{で表される}\]

※ ここで「えっ?」と思った人は拡張された三角比の定義とそこから作られる定理(公式)が怪しい.定義を大切にしない人はこういうところで躓きます!※

したがって,単位ベクトル\(\frac{\vec{b}}{|\vec{b}|}\)に,この「座標」を掛けてやれば,正射影ベクトルが求まります.\[\text{正射影ベクトル}=\frac{\vec{b}}{|\vec{b}|}|\vec{a}|\cos\theta\]これで正射影ベクトルを表す式が手に入りました.

・・・と,上の式を公式としてもいいのですが,見た目がちょっと汚いので,もう少し手を加えてみましょう.上の単位ベクトル\(\frac{\vec{b}}{|\vec{b}|}\)を\(\vec{e}\)と表すことにして,さらに\(|\vec{a}|\cos\theta\)が
\[
\begin{align*}
|\vec{a}|\cos\theta&=|\vec{a}||\vec{e}|\cos\theta\\
&=\vec{a}\cdot\vec{e}
\end{align*}
\]
と表せることに注意すると,結局正射影ベクトルは,\[(\vec{a}\cdot\vec{e})\vec{e}\]とシンプルに記述できることになります.この結果は記憶に値します.というか常識にしておきたい知識です.なぜなら,「正射影ベクトル」が欲しくなるシチュエーションは入試その他で頻出だからです.

後日,この正射影ベクトルが使われる例を紹介してみたいと思います.

© 2024 佐々木数学塾, All rights reserved.