同値変形,途中のアプローチの違い

\[\exists s \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \land s^2=4t \right]\]という主張の同値変形について見てみます.

【変形1】
\begin{align*}
&\exists s \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \land s^2=4t \right]&(0)\\
\Longleftrightarrow~&\exists s \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \land \frac{4Y^2}{(2-X)^2}=\frac{4X}{2-X}\right]&(1)\\
\Longleftrightarrow~&\exists s \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \land Y^2=X(2-X) \land X \neq 2 \right]&(2)\\
\Longleftrightarrow~&\exists s \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \right] \land Y^2=X(2-X) \land X \neq 2&(3)\\
\Longleftrightarrow~&X \neq 2 \land Y^2=X(2-X) \land X \neq 2&(4)\\
\Longleftrightarrow~&Y^2=X(2-X) \land X \neq 2&(5)\\
\Longleftrightarrow~&(X-1)^2+Y^2=1 \land X \neq 2
\end{align*}

\((2)\)は\(\frac{4Y^2}{(2-X)^2}=\frac{4X}{2-X} \Longleftrightarrow Y^2=X(2-X) \land X \neq 2\)
\((3)\)は\(Y^2=X(2-X) \land X \neq 2\)が変数\(s,t\)を含まないので,\(\exists s\exists t\)の支配域を変更することができるから
\((4)\)は\(\exists s \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \right] \Longleftrightarrow X \neq 2\)より
\((5)\)は
\[p \land q \Leftrightarrow q \land p,\quad p \land p \Leftrightarrow p\]
によります(いずれも真理値表から明らか)

【変形2】
\begin{align*}
&\exists s \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \land s^2=4t \right]&(0)’\\
\Longleftrightarrow~&\exists s \left[ \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \land s^2=4t\right]\right] &(1)’\\
\Longleftrightarrow~&\exists s \left[s = \frac{2Y}{2-X} \land \exists t\left[ t = \frac{X}{2-X} \land s^2=4t\right]\right] &(2)’\\
\Longleftrightarrow~&\exists s \left[s = \frac{2Y}{2-X} \land s^2=\frac{4X}{2-X}\right] &(3)’\\
\Longleftrightarrow~&\left(\frac{2Y}{2-X}\right)^2=\frac{4X}{2-X} &(4)’\\
\Longleftrightarrow~&Y^2=X(2-X) \land X \neq 2&(5)’\\
\Longleftrightarrow~&(X-1)^2+Y^2=1 \land X \neq 2
\end{align*}

\((1)’\)はそもそも\(\exists s\left[ \exists t[p(s,t)]\right]\)の略記が\(\exists s \exists t[p(s,t)]\)だから
\((2)’\)は支配域の変更.\((2)\)と同じ
\((3)’\)は\(\exists t\)の処理
\((4)’\)は\(\exists s\)の処理
\((5)’\)は\((1)\)と同様の同値変形によります

\((0)’\)から\(~(4)’\)までの同値変形はこのように書くと厳ついですがやってることは結局\(s,t\)の消去です.通常は\((0)’\)から\((4)’\)まで一気に一行で処理してしまうところだと思います.

\((0)\)から\((1)\)への変形と\((0)’\)から\((4)’\)への変形に違いに注意しましょう(詳しくはこの記事にて.関連:「『存在する』の扱い」「連立方程式の解法は…『文字を減らす』方針?」).文字を「消去する」ことを正しく認識していないとこういう箇所で間違えてしまうので注意.

【変形1】【変形2】いずれにしても同じ結論です.途中のアプローチが違えど,論理式を正しく扱いすれば必然的に同じ結論が得られる,ということでした.

\(\exists x[a \leq x \leq b] \Longleftrightarrow a\leq b\)

\(\exists x[a \leq x \leq b] \Longleftrightarrow a\leq b\)

証明

(\(\Rightarrow\))
存在する\(x\)を\(c\)とおくと,\(a \leq c \leq b\)が成り立つ.ゆえに\(a \leq b\)がいえる.

(\(\Leftarrow\))
\(a \leq b\)とする.このとき,\(\frac{a+b}{2}\)をとれば,\(a \leq \frac{a+b}{2} \leq b\)とかける.すなわち\(a \leq x \leq b\)をみたす\(x\)が(\(\frac{a+b}{2}\)として)存在する.

(証明終)

この問題で使いました.

同値変形で遊ぶ

\(x,y\)が\(4\)つの不等式\[x \geq 0,~y \geq 0,~2x+y \leq 8,~2x+3y \leq 12 \]を同時に満たすとき,\(x+y\)の最大値,最小値を求めよ.

出典:高等学校 数学Ⅱ 数研出版

数学Ⅱ教科書の「軌跡と領域」における最後に登場する中ボス的な有名問題です.いわゆる「線型計画法」によって解く問題ですね.「領域を描いて~直線がその領域に触れる範囲内で切片が最大・最小のものを答えて~」みたいなやつ.

これを教科書のように絵に頼らず,論理式で記述してみます.

解答

\begin{align*}
&x+yがkという値をとる\\
\Longleftrightarrow~& \exists x \exists y [x+y=k \land x \geq 0 \land y \geq 0 \land 2x+y \leq 8 \land 2x+3y \leq 12]\tag{1}\\
\Longleftrightarrow~& \exists x \exists y[y=k-x \land x \geq 0 \land y \geq 0 \land 2x+y \leq 8 \land 2x+3y \leq 12]\tag{\(\ast\)}\\
\Longleftrightarrow~& \exists x [x \geq 0 \land k-x \geq 0 \land 2x+(k-x) \leq 8 \land 2x+3(k-x) \leq 12\tag{2}]\\
\Longleftrightarrow~& \exists x [x \geq 0 \land k \geq x \land x \leq 8-k \land 3k-12 \leq x]\\
\Longleftrightarrow~& \exists x [(x \geq 0 \land k \geq x \land x \leq 8-k \land 3k-12 \leq x)\land (3k-12<0 \lor 0 \leq 3k-12)]\tag{3}\\
\Longleftrightarrow~& \exists x [(x \geq 0 \land k \geq x \land x \leq 8-k \land 3k-12 \leq x \land 3k-12<0) \\
&\lor (x \geq 0 \land k \geq x \land x \leq 8-k \land 3k-12 \leq x \land 0 \leq 3k-12)]\tag{4}\\
\Longleftrightarrow~& \exists x [x \geq 0 \land k \geq x \land x \leq 8-k \land 3k-12 \leq x \land 3k-12<0] \\
&\lor \exists x[x \geq 0 \land k \geq x \land x \leq 8-k \land 3k-12 \leq x \land 0 \leq 3k-12]\tag{5}\\
\Longleftrightarrow~& \exists x [0 \leq x \leq k \land 3k-12 \leq x \leq 8-k \land 3k-12<0] \\
&\lor \exists x[0 \leq x \leq k \land 3k-12 \leq x \leq 8-k \land 0 \leq 3k-12]\\
\Longleftrightarrow~& (0 \leq k \land 3k-12 \leq 8-k \land 3k-12<0) \\
&\lor (0 \leq k \land 3k-12 \leq 8-k \land 0 \leq 3k-12)\tag{6}\\
\Longleftrightarrow~& (0 \leq k \land k \leq 5 \land k < 4) \lor (0 \leq k \land k \leq 5 \land 4 \leq k)\\
\Longleftrightarrow~& 0 \leq k < 4 \lor 4 \leq k \leq 5\\
\Longleftrightarrow~& 0 \leq k \leq 5
\end{align*}

したがって,最大値\(5\),最小値\(0\).

\((1)\)は式の主張そのままなのですが,慣れないとこの言い換えが一番難しいかも知れません.この記事と同じ考え方です.
\((2)\)は存在記号の処理
\((3)\)は恒真条件\(3k-12<0 \lor 0 \leq 3k-12\)の追加
\((4)\)は分配法則
\((5)\)は存在記号の分配
\((6)\)はこちらの記事

…と,この解法はもはや完全に趣味ですね^^;大人しく教科書と同じく線型計画法で解いた方が明快でスマートだと思います.しかし,この解法のおもしろポイントは絵に頼らない(数直線はイメージしますが…)で論理を’計算’する感覚で機械的に答えにたどりつく,という点です(以前紹介した軌跡の問題と同じ).視覚的に解く以外にも,こういった論理だけでゴリゴリ攻める姿勢も身に付けておいても決して無駄にはならないと思います.

ちなみに教科書の解法(線型計画法)は\((\ast)\)の段階で視覚化を考えた,と考えられます.ですからいずれの解法にしても\((1)\)の言い換えは本来教科書レベルであっても必要なものだと思います.例によって「解ければいいや」で覚えて済ましがちですけどね.

\(p \rightarrow q \Longleftrightarrow \overline{p}\lor q\)

極めてよく使う同値変形\[p \rightarrow q \Longleftrightarrow \overline{p}\lor q\]を確認してみましょう.真理値表を書いて調べてみます.実際に紙の上で調べる際の手順を再現してみます(一緒に書いてみてくださいね).

まず,命題\(p\)と命題\(q\)の真偽の組合せは以下のように\(2\times 2\)通りあります.


次に,\(p \rightarrow q\)について調べたいので,最上行にそれを書きこみましょう.\(\rightarrow\)の定義から,その真理値は以下のように書けます(\(p\)が真で\(q\)が偽であるときのみ,\(p \rightarrow q\)は偽であるのでした).


次に,調べたい\(\overline{p}\lor q\)を同じく最上行に書き込みます.


いきなり\(\overline{p}\lor q\)の真理値を書き込むのは難しいので,順を追って書き込むことにします.まずは\(\overline{p}\)から.これは簡単ですね.定義により,次のように書き込めます.


次に\(q\).これはそのまま.


いよいよ\(\overline{p}\lor q\)の真理値.\(\lor\)の定義により,


さて,\(p \rightarrow q\)と\(\overline{p}\lor q\)の真理値をながめてみましょう.真理値が一致しています.すなわちこの二つの命題は同値であることが確認できます.

※ 本来ならば,\(p,~\overline{p},~\overline{p}\lor q\)の真理値はそれぞれ別々の列に書くのが正しい(と思う)のですが,面倒なので上のように略記しています.

難しさの原因

松坂和夫先生の線型代数に,次のような命題があった.

\(V\)をベクトル空間とするとき,

実数\(c\)と\(V\)の元\(\boldsymbol{v}\)に対して,もし\(c\boldsymbol{v}=0\)が成り立つならば,\(c=0\)または\(\boldsymbol{v}=0\)

で,その証明の冒頭が,次のようなものだった.

\(c\boldsymbol{v}=0,c\neq 0\)とする.そのとき\(v=0\)であることを証明すればよい.

線型代数は理工系学部1年生,つまりほぼ高校生が学ぶ科目なので,ここで「?」となる人は少なくないと思う.

ここを論理式で記述してみます.「\(c\boldsymbol{v}=0\)が成り立つならば,\(c=0\)または\(\boldsymbol{v}=0\)」という日本語は,
\[c\boldsymbol{v}=0 \Longrightarrow c=0 \lor \boldsymbol{v}=0\]ということですから,これを同値変形してみます.
\begin{align}
&c\boldsymbol{v}=0 \Longrightarrow c=0 \lor \boldsymbol{v}=0\\
\Longleftrightarrow~ &\overline{c\boldsymbol{v}=0} \lor ( c=0 \lor \boldsymbol{v}=0 )&\qquad\text{(\(\Rightarrow\)の定義)}\\
\Longleftrightarrow~ &(\overline{c\boldsymbol{v}=0} \lor c=0 ) \lor \boldsymbol{v}=0 &\qquad\text{(結合法則)}\\
\Longleftrightarrow~ &(\overline{c\boldsymbol{v}=0 \land c\neq 0} ) \lor \boldsymbol{v}=0 &\qquad\text{(ドモルガンの法則)}\\
\Longleftrightarrow~ &c\boldsymbol{v}=0 \land c\neq 0 \Longrightarrow \boldsymbol{v}=0 &\qquad\text{(\(\Rightarrow\)の定義)}\\
\end{align}

となり納得できます.こうしてみるとやはり論理学あっての数学だなと改めて感じます.しかしこういった話題は数学系ならば大学初年度で扱うにもかかわらず高校段階では論理学を学ぶ機会はほとんどありません.理工系学部,とくに数学系志望者のために高校のカリキュラムにも論理学をもう少しまともに取り入れるべきではないでしょうか?公式の使い方だの数式処理の仕方に終始することももちろん大事ではありますが….「大学へ行って数学が分からなくなった」という学生(かつての自分含め)を量産する責任の一端は高校の授業・高校のカリキュラムにもある気がします.

否定をとることの難しさと論理式の有用性

背理法で示す方針の場合,与えられた命題を否定する必要がありますが,これが意外と難しいケースがあります.

\(xy\)平面内の相異なる4点\(P_1,~P_2,~P_3,~P_4\)とベクトル\(\overrightarrow{v}\)に対し,\(k\neq m\)のとき\(\overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\)が成り立っているとする.このとき,\(k\)と異なるすべての\(m\)に対し\[\overrightarrow{P_kP_m}\cdot\overrightarrow{v}<0\]が成り立つような点\(P_k\)が存在することを示せ.(京都大・文)

この問題の場合,与えられた命題は

「\(k\neq m\)のとき\(\overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\)が成り立っているとする.このとき,\(k\)と異なるすべての\(m\)に対し\(\overrightarrow{P_kP_m}\cdot\overrightarrow{v}<0\)が成り立つような点\(P_k\)が存在する」

です.この否定をとればいいわけですが,どこからどう手をつければいいのかいまいちわからない,できたとしてもなんだか不安….そこで,ここでは論理記号を用いて捉えてみます.与えられた命題を次の4つの部分に分けて翻訳していきます.

      1. \(k\neq m\)のとき\(\overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\)が成り立っているとする.
      2. このとき,
      3. \(k\)と異なるすべての\(m\)に対し\(\overrightarrow{P_kP_m}\cdot\overrightarrow{v}<0\)が成り立つ
      4. ような点\(P_k\)が存在する

1.「\(k\neq m\)のとき\(\overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\)が成り立っているとする」は
\[k\neq m \Longrightarrow \overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\]

2.「このとき」は\[\Longrightarrow\]

3.「\(k\)と異なるすべての\(m\)に対し\(\overrightarrow{P_kP_m}\cdot\overrightarrow{v}<0\)が成り立つ」は\[\forall m \big[m\neq k \Longrightarrow \overrightarrow{P_kP_m}\cdot\overrightarrow{v}<0\big]\]

4.「ような点\(P_k\)が存在する」は
\[\exists P_k\]

ですから,以上を繋げると,
\[\big(k\neq m \Longrightarrow \overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\big)\Longrightarrow\exists P_k\forall m \big[m\neq k \Longrightarrow \overrightarrow{P_kP_m}\cdot\overrightarrow{v}<0\big]\]
となります.これの否定を考えます.
\[\overline{\big(k\neq m \Longrightarrow \overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\big)\Longrightarrow\exists P_k\forall m \big[m\neq k \Longrightarrow \overrightarrow{P_kP_m}\cdot\overrightarrow{v}<0\big]}\]

ここで,一般に
\[
\begin{align*}
&(A\rightarrow B)\Longleftrightarrow \overline{A}\lor B
\end{align*}
\]
ですから,
\[\overline{A\rightarrow B}\Longleftrightarrow \overline{\overline{A} \lor B}\Longleftrightarrow A \land \overline{B}\]
です.したがって,
\[
\begin{align*}
&\overline{\big(k\neq m \Longrightarrow \overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\big)\Longrightarrow\exists P_k\forall m \big[m\neq k \Longrightarrow \overrightarrow{P_kP_m}\cdot\overrightarrow{v}<0\big]}\\
\Longleftrightarrow~&\big(k\neq m \Longrightarrow \overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\big)\land \overline{\exists P_k\forall m \big[m\neq k \Longrightarrow \overrightarrow{P_kP_m}\cdot\overrightarrow{v}<0\big]}\\
\Longleftrightarrow~&\big(k\neq m \Longrightarrow \overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\big)\land \forall P_k\exists m \big[\overline{m\neq k \Longrightarrow \overrightarrow{P_kP_m}\cdot\overrightarrow{v}<0}\big]\\
\Longleftrightarrow~&\big(k\neq m \Longrightarrow \overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\big)\land \forall P_k\exists m \big[m\neq k \land \overline{\overrightarrow{P_kP_m}\cdot\overrightarrow{v}<0}\big]\\ \Longleftrightarrow~&\big(k\neq m \Longrightarrow \overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\big)\land \forall P_k\exists m \big[m\neq k \land \overrightarrow{P_kP_m}\cdot\overrightarrow{v}\geq0\big]\\ \Longleftrightarrow~&\big(k\neq m \Longrightarrow \overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\big)\land \forall P_k\exists m \big[(m\neq k \land \overrightarrow{P_kP_m}\cdot\overrightarrow{v}>0)\lor(m\neq k \land\overrightarrow{P_kP_m}\cdot\overrightarrow{v}=0)\big]\\
\Longleftrightarrow~&\big(k\neq m \Longrightarrow \overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\big)\land \forall P_k\big[\exists m(m\neq k \land \overrightarrow{P_kP_m}\cdot\overrightarrow{v}>0)\lor\exists m(m\neq k \land\overrightarrow{P_kP_m}\cdot\overrightarrow{v}=0)\big]\\
\Longleftrightarrow~&\big(k\neq m \Longrightarrow \overrightarrow{P_kP_m}\cdot \overrightarrow{v}\neq 0\big)\land \forall P_k\exists m(m\neq k \land \overrightarrow{P_kP_m}\cdot\overrightarrow{v}>0)
\end{align*}
\]
となります.

もとの問題の解説では他の解法があったのですが,別解としての上記のように否定をとり矛盾を示す方針が載っていました.が,その「否定をとる」という作業の時点で既に難しく,ならば論理式で記述したらどうなるかなと思い考えてみました.見た目こそ厳ついものの,論理式の扱いに慣れさえすればとても分かりやすく明解です.

命題(条件)の分配法則

命題や条件は,分配することができます.すなわち,
\[(p\lor q)\land r \Longleftrightarrow (p \land r)\lor (q \land r)\]や\[(p\land q)\lor r \Longleftrightarrow (p \lor r)\land (q \lor r)\]などが成り立ちます.

証明

真理表で確認します.
まず,\(p,~q,~r\)の真偽は\(2^3=8\)通りあることに注意して,

と書けます.見やすさのためにFを赤色にしました.
次に\(p\lor q\)を書き,その列を埋めましょう.\(p\)の列と\(q\)の列に着目して,\(\lor\)の定義に従うと,

と書けます.次に\((p\lor q)\land r\)を書き,その列を埋めます.\(p\lor q\)と\(r\)の列に着目して,\(\land\)の定義に従うと,

と書けます.
今度は\( (p \land r)\lor (q \land r)\)について調べます.そのためにはまず\((p \land r)\)と\((q \land r)\)を調べなくてはなりません.なのでまず,\(p\lor r\)と\(q \land r\)を書き,それぞれの列を埋めましょう.\(p\)の列と\(r\)の列,そして\(q\)の列と\(r\)の列に着目して\(\land\)の定義に従うと,

と書けます.さて,準備ができたので\( (p \land r)\lor (q \land r)\)を書いてその列を埋めていきましょう.先ほど書いた\( (p \land r)\)と\((q \land r)\)の列に着目して\(\lor\)の定義に従うと,

と書けます.

さて,ここで\((p\lor q)\land r\)と\((p \land r)\lor (q \land r)\)の列に着目しましょう.すると,真理値が同じですね.同値\(\leftrightarrow\)の定義より,\((p\lor q)\land r\)と\((p \land r)\lor (q \land r)\)が同値であることが分かります.

これで,\((p\lor q)\land r \Longleftrightarrow (p \land r)\lor (q \land r)\)であることが証明できました.同様にして,\((p\land q)\lor r \Longleftrightarrow (p \lor r)\land (q \lor r)\)が証明できます.

「でない」「かつ」「または」「ならば」の定義

最初に「命題」「条件」という言葉の確認から.

命題:正しいか正しくないかを一意的に判定できる主張
条件:変数(変項ともいいます)を含む命題

これらは高校生は数学Ⅰで既習だと思います.

以下,\(p,~q\)を命題とします.\(\overline{p},~p\land q,~p \lor q,~p\rightarrow q\)を改めて定義します.

定義

\(p\land q\)
\(p\)と\(q\)が両方真のときのみ真で,その他の場合はすべて偽となるような命題.この命題を「\(p\)かつ\(q\)」と呼び,\(p \land q\)と表す.

\(p \lor q\)
\(p\)と\(q\)が両方偽ときのみ偽で,その他の場合はすべて真となるような命題.この命題を「\(p\)または\(q\)」と呼び,\(p \land q\)と表す.

\(\overline{p}\)
\(p\)が真のときに偽で\(p\)が偽のときに真となるような命題.この命題を「\(p\)でない」あるいは「\(p\)の否定」と呼び,\(\overline{p}\)あるいは\(\lnot{p}\)と表す.

\(p\rightarrow q\)
\(p\)が真で\(q\)が偽のときのみ偽で,その他の場合はすべて真となるような命題.この命題を「\(p\)ならば\(q\)」と呼び,\(p\rightarrow q\)と表す.

上が\(p\land q,~p \lor q,~\lnot p,~p\rightarrow q\)の定義です.…が,とても見にくいですね.そこで以下のような表でまとめてみます.Tは真(True)を,Fは偽(False)を表すとします.


大分見やすくなりました.これを,「真理表(または真理値表)」と呼びます.以後,\(p\land q,~p \lor q,~\lnot p,~p\rightarrow q\)を上の表に従う命題とし,これらの表に基づき各種命題の真偽判定していくことになります.

(補足1)
ところで,この定義の中で唯一違和感があるとしたら,「『\(p\)ならば\(q\)』は,\(p\)が偽のとき\(q\)の真偽に関わらず真とする」という点かと思います.定義なんだからつべこべ言わず受け入れましょう,と言いたいところですが(「定義する」と言われたら受け入れるしかない?),あえて感覚的な説明をするとしたら,次のように考えると受け入れやすいかもしれません:

とある家庭で父親が息子に言いました「テストで満点をとったら,スマホを買ってあげるよ」と.

このとき,次の4つのケースが考えられます.

    1. 息子が満点をとり,父親がスマホを買ってあげる
    2. 息子が満点をとり,父親がスマホを買ってあげない
    3. 息子は満点をとれず,父親がスマホを買ってあげる
    4. 息子は満点をとれず,父親がスマホを買ってあげない

このうち,父親が「約束を守った・破った」ことになるのはどれかを考えてみます.1.これは父親はきちんと約束を守っています.2.これは父親は明らかに約束を破っていますね.さて,3と4についてはこのように考えられないでしょうか:

そもそも息子が満点を取ってない以上,父親が買ってあげようとも(満点とれなかったのにラッキーですね)買ってあげずとも,約束を破ったことにはならない,すなわち約束を守ったことになる.

このように考えると「ならば」を上のように定義することが感覚的に受け入れられるのではないでしょうか.

(補足2)
命題\[p \longrightarrow q\]
が真であることを,
\[p \Longrightarrow q\]
と表します.ですから,「\(p \Rightarrow q\)」は「\(p \rightarrow q\)が真である(成り立つ)」と読み替えられます.

「すべて」「存在する」の否定

以下,\(x\in \{x_1,~x_2,~x_3,\cdots ,x_n\}\)とする.

\(\overline{\forall x~p(x)} \Longleftrightarrow \exists x~\overline{p(x)}\)

証明

\[
\begin{align*}
&\overline{\forall x~p(x)}\\
\Longleftrightarrow~&\overline{p(x_1)\land p(x_2)\land p(x_2)\land \cdots \land p(x_n)}\\
\Longleftrightarrow~&\overline{p(x_1)}\lor \overline{p(x_2)}\lor \overline{p(x_2)}\lor \cdots \lor\overline{p(x_n)}\\
\Longleftrightarrow~&\exists x~\overline{p(x)}&\textbf{(証明終)}
\end{align*}
\]

\(\overline{\exists x~p(x)} \Longleftrightarrow \forall x~\overline{p(x)}\)

証明

\[
\begin{align*}
&\overline{\exists x~p(x)}\\
\Longleftrightarrow~&\overline{p(x_1)\lor p(x_2)\lor p(x_2)\lor \cdots \lor p(x_n)}\\
\Longleftrightarrow~&\overline{p(x_1)}\land \overline{p(x_2)}\land \overline{p(x_2)}\land \cdots \land\overline{p(x_n)}\\
\Longleftrightarrow~&\forall x~\overline{p(x)}&\textbf{(証明終)}
\end{align*}
\]

\(\forall\)(すべての)を否定すると\(\exists\)(存在する)となり,\(\exists\)(存在する)を否定すると\(\forall\)(すべての)となります.

\(\exists x \forall y\)と\(\forall y \exists x\)の違い

並びが違うだけのように見えますが意味は全く異なります.\(p(x,~y)\)を条件とします.

\(\exists x \forall y~p(x,~y)\)は「\(x\)が存在して,任意の\(y\)に対して\(p(x,~y)\)が成り立つ」となります.最初に「存在して」と言っているあたりが慣れないと気持ち悪いと思います.なので言い換えると,「任意の\(y\)に対して\(p(x,~y)\)が成り立つような\(x\)が,\(y\)とは無関係に存在する」となります.

ポイントは,\(x\)は\(y\)に依存していないということです.

他方,\(\forall y \exists x ~p(x,~y)\)は「どんな\(y\)に対しても,それに対応して\(x\)が存在して,\(p(x,~y)\)が成り立つ」ということです.やはり「存在して」が先に来ると違和感がある人は「\(p(x,~y)\)が成り立つような\(x\)が,\(y\)に応じて存在する」と言い換えればよいと思います.

こちらは\(x\)は\(y\)に依存しているということがポイントです.

【具体例】

条件\(p(x,~y)\)を「\(x\)は\(y\)の親である」という条件とします(\(x,y\in \text{人類}\)).このとき,

\(\exists x \forall y~p(x,~y)\)は,
\[\exists x \forall y~[~\text{\(x\)は\(y\)の親である}~]\]
となります.これを翻訳すると「人間\(x\)が存在して,その人間\(x\)はすべての人間\(y\)の親である」,あるいは「どんな人間\(y\)にとっても親となる人間\(x\)が(その人間\(y\)が誰であるかとは無関係に)存在する」となります.

・・・この命題は常識的に考えれば真とは言いづらいですね^^;宗教のようなある種の信仰を持っている人にとってはこの命題も真と言えるのかもしれませんが.

他方,\(\forall y \exists x ~p(x,~y)\)は,

\[\forall y \exists x ~[~\text{\(x\)は\(y\)の親である}~]\]

これを翻訳すると「どんな人間\(y\)に対しても,その人間\(y\)に対応して\(x\)という人間が存在し,\(x\)と\(y\)との間に親子関係が成り立つ」あるいは「どんな人間\(y\)に対しても,その人間に応じて親\(x\)が存在する」となります.

・・・この命題は明らかに真でしょう.(クローン人間など特殊な例を考えない限り)物理的に人間から生まれなかった人間はいませんから.

以上,\(\exists x \forall y\)と\(\forall y \exists x\)の違い,それは\(x\)と\(y\)の間に関係(対応)があるかないか,ということです!

© 2024 佐々木数学塾, All rights reserved.