いわゆる「場合分け」って

\(ax^2-2x-a=0\)を解け.ただし,\(a\)は定数とする.

「(ア)\(a=0\)のとき~(イ)\(a\neq0\)のとき~,」という,\(a\)が0かどうかで場合分けするお馴染みの問題です。これを論理式で記述すると

\[
\begin{align*}
&ax^2-2x-a=0 \land(a=0 \lor a \neq 0)\\
\Longleftrightarrow~ & (ax^2-2x-a=0 \land a=0) \lor (ax^2-2x-a=0 \land a \neq 0)\\
\Longleftrightarrow~ & (0-2x-0=0 \land a=0) \lor \left(x=\frac{1\pm\sqrt{1^2-a\cdot(-a)}}{a} \land a \neq 0 \right)\\
\Longleftrightarrow~ & (x = 0 \land a=0) \lor \left(x=\frac{1\pm\sqrt{1+a^2}}{a} \land a \neq 0 \right)
\end{align*}
\]

となります。

「かつ」「または」の分配法則

\(p,~q,~r,~s\)を命題とする.このとき,
\[p\land (q \lor r) \Longleftrightarrow (p\land q) \lor (p\land r)\]
が成り立ちます.高校数学的にはベン図で証明(というか説明?)しますが,論理学的には真理値表で証明します.

他にも,\[p\lor (q \land r) \Longleftrightarrow (p\lor q) \land (p\lor r)\]や\[(p\lor q) \land (r \lor s) \Longleftrightarrow (p\land r) \lor (q\land r) \lor (p \land s) \lor (q \land s)\]や
\[(p\land q) \lor (r \land s) \Longleftrightarrow (p\lor r) \land (q\lor r) \land (p \lor s) \land (q \lor s)\]なども同様に成り立ちます.数や文字の分配法則にそっくりですね.証明はこちら

軌跡の問題を論理式で記述する

2直線\(kx+2y-k+4=0\)と\(2x-ky+6-2k=0\)がある.\(k\)の値が変化するとき,この2直線の交点の軌跡の方程式を求めよ.

網羅系問題集には必ず載ってる軌跡の有名問題です.この手の問題に難儀した人は少なくないと思います.初めて見る人はこれを教科書で学んだ方法で解答を作成してみましょう.正解ならOK(軌跡に「漏れ」や「余計なもの」が入っていたらそれは正解とはいいませんよ).不正解なら以下を読んでみてください.

論理式で記述してみます.

求める軌跡上の点を\((X,~Y)\)とします.「\((X,~Y)\)が軌跡上の点である」ということを「\((X,~Y)\in\text{軌跡}\)」と表すことにします.この「\((X,~Y)\in\text{軌跡}\)」を同値変形することを考えます.

\[
\begin{align*}
&(X,~Y)\in\text{軌跡}\\
\Longleftrightarrow~&\exists k\begin{cases}
kX+2Y-k+4=0\\
2X-kY+6-2k=0
\end{cases}\tag{1}\\
\Longleftrightarrow~&\exists k\begin{cases}
(X-1)k=-2Y-4\\
2X-kY+6-2k=0
\end{cases}\\
\Longleftrightarrow~&\exists k\begin{cases}
(X-1)k=-2Y-4\land(X-1=0 \lor X-1\neq 0)\\
2X-kY+6-2k=0\tag{2}
\end{cases}\\
\Longleftrightarrow~&\exists k\begin{cases}
((X-1)k=-2Y-4\land X-1=0) \lor ((X-1)k=-2Y-4\land X-1\neq 0)\\
2X-kY+6-2k=0\tag{3}
\end{cases}\\
\Longleftrightarrow~&\exists k\begin{cases}
(0\cdot k=-2Y-4\land X=1) \lor (k=\frac{-2Y-4}{X-1}\land X\neq 1)\\
2X-kY+6-2k=0
\end{cases}\\
\Longleftrightarrow~&\exists k\begin{cases}
(X=1\land Y=-2) \lor (k=\frac{-2Y-4}{X-1}\land X\neq 1)\\
2X-kY+6-2k=0
\end{cases}\\
\Longleftrightarrow~&\exists k\left(((X=1\land Y=-2) \lor (k=\frac{-2Y-4}{X-1}\land X\neq 1))\land 2X-kY+6-2k=0\right)\\
\Longleftrightarrow~&\exists k\left((X=1\land Y=-2\land 2X-kY+6-2k=0) \lor (k=\frac{-2Y-4}{X-1}\land X\neq 1\land 2X-kY+6-2k=0)\right)\tag{4}\\
\Longleftrightarrow~&\exists k(X=1\land Y=-2\land 2X-kY+6-2k=0) \lor \exists k(k=\frac{-2Y-4}{X-1}\land X\neq 1\land 2X-kY+6-2k=0)\tag{5}\\
\Longleftrightarrow~&\exists k(X=1\land Y=-2\land 2\cdot 1-k\cdot (-2)+6-2k=0) \lor (X\neq 1\land 2X-\frac{-2Y-4}{X-1}Y+6-2\frac{-2Y-4}{X-1}=0)\tag{6}\\
\Longleftrightarrow~&\exists k(X=1\land Y=-2\land 0\cdot k+8=0) \lor (X\neq 1\land X^2+2X+Y^2+4Y+1=0)\tag{7}\\
\Longleftrightarrow~&X\neq 1\land (X+1)^2+(Y+2)^2=4\tag{8}\\
\end{align*}
\]

となって求める軌跡の方程式を得ます.通常の解答を見るとわかりますが,読めばとりあえず理解はできるものの,いざ自分で解答をつくれと言われると次に何をやればよいのか見えずらく(必然性が感じられず)不安に感じるタイプの問題ではないでしょうか.で,結局半ば流れを「覚えよう」となるっていう.しかし,上で見るように論理式で記述すると機械的な変形(次にすべきことが明解で迷いがない,もはや「計算」するような感覚)により答えを得ることがきます.これが論理式の強力な点だと思います.

ただし上の変形は論理に関する様々な知識を使っています.

\((1)\)は存在条件への言い換えです.
\((2)\)は恒真条件\(X-1=0\lor X-1\neq 0\)の追加
\((3)\)は分配法則
\((4)\)は分配法則
\((5)\)は存在記号の分配法則
\((6)\)後半は存在記号があるので\(k\)を消去できて
\((7)\)の前半は矛盾命題なので\((8)\)と同値になります.

(というか数式がはみ出て見づらくてすみません…)

存在記号は分配できるか?

できます(かつ(\(\land\))に関して).なぜなら,

\[\forall x[p(x)\land q(x)]~\Longleftrightarrow \forall x p(x)\land \forall x q(x)\]であるから,この命題の待遇を考えると,

\[\lnot(\forall x[p(x)\land q(x)])~\Longleftrightarrow \lnot(\forall x p(x)\land \forall x q(x))\]

すなわち

\[\exists x[\lnot p(x)\lor \lnot q(x)]~\Longleftrightarrow \exists x \lnot p(x)\lor \exists x \lnot q(x)\]

となります.\(\lnot\)は否定を表す記号です.ですから,

\[\exists x[\overline{p(x)}\lor \overline{q(x)}]~\Longleftrightarrow \exists x \overline{ p(x)}\lor \exists x \overline{q(x)}\]

とも書けますね.見やすさのために\(\overline{p(x)}\)を\(p(x)\)に,\(\overline{q(x)}\)を\(q(x)\)に改めて書き換えれば,
\[\exists x[p(x) \lor q(x)]~\Longleftrightarrow \exists x p(x)\lor \exists x q(x)\]
となります.

注意:ただし,存在記号はかつ(\(\land\))に関しては分配できません!すなわち,\[\exists x[p(x) \land q(x)] \Longrightarrow \exists x p(x) \land \exists xq(x)\]であって,この逆は成り立ちません.これは具体例を考えれば分かりやすい.仮に全体集合をあるクラスだとして,\(p(x)\)を「\(x\)は勉強が得意」\(q(x)\)を「\(x\)はスポーツが得意」だとします.すると,\(\exists x[p(x) \land q(x)]\)は「勉強もスポーツも両方得意な生徒がいる」となり,\(\exists x p(x) \land \exists xq(x)\)は「勉強が得意な生徒がいて,かつ,スポーツが得意な生徒もいる」となります.\(\Longrightarrow\)が成り立つのは当たり前でしょう.\(\Longleftarrow\)について考えます.「(そのクラスに)勉強が得意な生徒がいて,スポーツが得意な生徒もいるのなら,勉強もスポーツも両方得意な生徒がいる」となりますが,これは正しいでしょうか.少し考えればわかるように明らかに正しくないですね.反例.仮定を満たすクラスとして,「勉強は超得意だけどスポーツはダメダメな秀才君がいて,スポーツは超得意だけど勉強はからっきしの脳筋君がいる.そしてクラスの他の生徒たちは勉強もスポーツもとくに得意とは言えない,いたってフツーの生徒,そんなクラスが例えば考えられます.このクラスには明らかに「勉強もスポーツも両方得意な生徒」はいることにはなりませんね.

任意記号は分配できるか?

\(p(x),~q(x)\)を条件とする.\(\forall\)は「任意記号(または全称記号)」と呼び,「任意の(Any),すべての(for All)」という意味です.Aをひっくり返して\(\forall\).このとき,

\[\forall x[p(x)\land q(x)]~\Longleftrightarrow \forall x p(x)\land \forall x q(x)\quad \cdots (\ast)\]

が成り立ちます.例えば,\(p(x)\)を「\(x\)は勉強が得意」という条件,\(q(x)\)を「\(x\)はスポーツが得意」という条件だとしましょう.このとき,\(\forall x[p(x)\land q(x)]\)は

\[\text{全員,勉強とスポーツ両方得意}\]

という意味になります.イメージし易さのため,\(x\in \text{(とあるクラス)}\)とすると,

\[\text{このクラスの全員が,勉強とスポーツ両方得意}\]

となります.いわば,スーパーマンみたいな奴だけで構成されたクラスですね,そんなクラスをイメージしてください.

他方,\(\forall x p(x)\land \forall x q(x)\)は\[\text{このクラスの全員が勉強が得意で,かつ,このクラスの全員がスポーツが得意}\]という意味になります.

これらの「翻訳」に従って,上の\((\ast)\)を記述し直してみると,

\begin{align*}
&\text{このクラスの全員が,勉強とスポーツ両方得意}\\
\Longleftrightarrow~&\text{このクラスの全員が勉強が得意で,かつ,このクラスの全員がスポーツが得意}
\end{align*}

ということになります.このようにイメージすると,\((\ast)\)の\(\Longleftarrow\)も\(\Longrightarrow\)もどちらも成り立つこと,すなわち同値であることが容易に納得できます.

注意:ただし,任意記号はまたは(\(\lor\))に関しては分配できません

© 2024 佐々木数学塾, All rights reserved.