平面の方程式

平面の方程式を作ってみます。

ここでは,平面はその平面の垂直方向とその平面が通る1点が定まれば決定することに着目します。平面の法線ベクトルを\(\overrightarrow{n}=(a,b,c)\),平面が通る1点の座標を\(A(a_0,b_0,c_0)\),平面上の任意の点を\(P(x,y,z)\)とおくことにします。\begin{align*}
&\overrightarrow{AP} \cdot \overrightarrow{n} = 0\\
\Longleftrightarrow~ &\left(\begin{array}{c} x-a_0 \\ y-b_0 \\ z-c_0 \end{array}\right)\cdot\left(\begin{array}{c} a \\ b \\ c \end{array}\right)= 0\\
\Longleftrightarrow~ &a(x-a_0)+b(y-b_0)+c(z-c_0)=0\\
\Longleftrightarrow~ &ax+by+cz-aa_0-bb_0-cc_0=0\\
\Longleftrightarrow~ &ax+by+cz+d=0
\end{align*}よって,平面の方程式は\(ax+by+cz+d=0\)と書けること,そしてその法線ベクトルが\((a,b,c)\)で表されることが分かりました(途中,\(-aa_0-bb_0-cc_0=d\)とおきました)。直線の方程式が\(ax+by+c=0\)と書けること,そしてその法線ベクトルが\((a,b)\)で表されることにそっくりですね。

© 2024 佐々木数学塾, All rights reserved.