実験する

次の\(2\)つの条件\(\mathrm{(i),(ii)}\)をみたす自然数\(n\)について考える.

\(\mathrm{(i)}~\)\(n\)は素数ではない.
\(\mathrm{(ii)}~\)\(l,m\)を\(1\)でも\(n\)でもない\(n\)の正の約数とすると,必ず\[|l-m|\leq 2\]である.このとき,次の問いに答えよ.

    1. \(n\)が偶数のとき,\(\mathrm{(i),(ii)}\)をみたす\(n\)をすべて求めよ.
    2. \(n\)が\(7\)の倍数のとき,\(\mathrm{(i),(ii)}\)をみたす\(n\)をすべて求めよ.
    3. \(2\leq n \leq 1000\)の範囲で,\(\mathrm{(i),(ii)}\)をみたす\(n\)をすべて求めよ.

(大阪大)

うーん/(^o^)\
なんかよくわからないので,実験してみます。

(考え方)

\(\textbf{1.}\)
偶数\(2,4,6,8,\cdots\)を順に調べてみます。

するとどうやら,\(n\)が\(10\)以降だと適するものが現れないのでは?と予想できます。そこで,「\(n\geq 10\)ならば\(n\)は\(\mathrm{(i),(ii)}\)を満たさない」という命題の証明を試みます。実際,\(n=2k~(k\geq 5)\)とおくと,\(2\)と\(k\)は\(n(=2k)\)の\(1\)でも\(n\)でもない正の約数ですが,\[|k-2|=k-2\geq 5-2 =3\]となり\((\mathrm{ii})\)を満たしません。

これで\(1.\)の答えは\(4,6,8\)のみであることが分かりました。

\(\textbf{2.}\)
これも\(1.\)と同様に考えてみます。ただし\(n\)が偶数の場合は\(1.\)ですでに調べているので,これを除いて調べていきます:

すると\(n\)が\(63\)以降だと適するものが現れないのでは?と予想できます。そこで「\(n\geq 63\)ならば\(n\)は\(\mathrm{(i),(ii)}\)を満たさない」という命題の証明を試みると:

\(n=7k~(k\geq 9)\)とおく.\(k=9\)とき,\(n=63\)より正の約数は\(1,3,7,9,21,63\)だから\((\mathrm{ii})\)を満たさない.\(k \geq 11\)のとき,\(7\)と\(k\)は\(n(=7k)\)の\(1\)でも\(n\)でもない正の約数だが,\[|k-2|=k-2\geq 11-2 =9\]となり\((\mathrm{ii})\)を満たさない.

これで\(2.\)の答えは\(35\)と\(49\)のみであることが分かりました。

\(\textbf{3}.\)
上と同じように考えれば,\(n\)が\(3\)の倍数のとき,\(5\)の倍数のときも同じように\(\mathrm{(i),(ii)}\)を満たす\(n\)が簡単に見つかる気がします。もしそうであれば,結局\(2,3,5,7\)の倍数についてはすべて調べ上げたことになるので,調べるべき残りの\(n\)は(\(\mathrm{(i)}\)より\(n\)は素数でないことに注意すれば)\(11\)以上の素因数からなる合成数のみ調べればよいことが分かります(エラトステネスのふるい)。また,その合成数の因数の個数に着目すれば,因数の個数が\(1\)個のとき素数になるから\(\mathrm{(i)}\)を満たさず,因数の個数が\(3\)個以上のときは最小でも\(11^{3}=1331\)となり\(1000\)を超えてしまうことから,(素)因数の個数は\(2\)個であることが分かります。さらに,\(37 \times 37 =1369>1000\)より,\(37\)以降の素数については考える必要はありません。以上の考察から以下のように結論できます:

\(n\)が\(3\)の倍数の場合
\(2,7\)の倍数のときはすでに調べてあり,また\(5\)の倍数の場合はこのあと調べるのでこれらを除いて調べると

求める\(n\)は\(9\)のみであることが分かる(証明は上と同様なので割愛).

\(n\)が\(5\)の倍数の場合

求める\(n\)は\(15\)と\(25\)のみであることが分かる(証明割愛).
あとは素因数が\(11\)以上で\(31\)以下であり,かつその個数が\(2\)個である合成数のみを調べればよい.


するとそれは(\(\mathrm{(ii)}\)に注意して)\[11^2,13^2,17^2,19^2,23^2,29^2,31^2,11\times13,17\times19,29\times 31\]すなわち\[121,169,289,361,529,841,961,143,323,899\]のみであることがわかる.以上により求める\(n\)は\[4,6,8,9,15,25,35,49,121,143,169,289,323,361,529,841,899,961\]となる.

(考え方終わり)

既知の解法にはまらないとき,あるいは既知の解法に帰着しないとき(=何をすればいいのか見通しが立たないとき),「とりあえず実験してみて,予想し,それを証明する」という姿勢はしばしば有効な気がします。(少なくとも泥臭く手を動かすだけで\(2.\)までは答えを導ける!)

必要条件を追う

\(a_0,a_1,a_2\)を有理数とし,\(f(x)=a_0+a_1x+\frac{a_2}{2}x(x-1)\)とする.\(1\)つの整数\(n\)に対して,\(f(n),f(n+1),f(n+2)\)が整数ならば,\(a_0,a_1,a_2\)は整数であることを示せ.

(中央大)

示すべきは必要条件であること,つまり十分性(逆が言えるか?)を考える必要がないことに注意します。これは細かいことを考えず手元にある道具(仮定)を好き勝手にいじり倒して結論が言えればその時点で証明終わりということなので気楽です:\[f(n),f(n+1),f(n+2)\in\mathbb{Z}\overset{\text{ひつよう!}}{\Longrightarrow} a_0,a_1,a_2 \in\mathbb{Z}\]
とりあえず,\(f(n)\)と\(f(n+1)\)の\(n\)と\(n+1\)は連番なので,差をとってみたらどうか?と思いつきます。(邪魔者がもろもろ消えそうだから)\begin{align*}
&~f(n+1)-f(n)\in \mathbb{Z}\\
\Longleftrightarrow&~\left(a_0+a_1(n+1)+\frac{a_2}{2}(n+1)n\right)\\
&~-\left(a_0+a_1n+\frac{a_2}{2}n(n-1)\right)\in \mathbb{Z}\\
\Longleftrightarrow&~a_1+a_2n \in \mathbb{Z}\tag{1}
\end{align*}なんかうまくいきそうなので,\(f(n+2)-f(n+1)\)も同様に計算すると,\[f(n+2)-f(n+1)\in \mathbb{Z}\Longleftrightarrow a_1+a_2n+a_2 \in \mathbb{Z}\tag{2}\]が得られます。\((1)\)と\((2)\)において\(a_1+a_2n\)が共通していることに着目して\(a_2\)が整数であることがわかり,またこれと\((1)\)により芋づるで\(a_1\)が整数であることが言えます。残りは\(a_0\)ですが,これは\(f(n)=a_0+a_1+\frac{a_2}{2}n(n-1)\in\mathbb{Z}\)であること,すでに示したように\(a_1,a_2\in \mathbb{Z}\)であること,そして\(n(n-1)\)は連続数だから偶数したがって\(\frac{a_2}{2}n(n-1)\in\mathbb{Z}\)であることからいうことができます。(証明終)

とりあえず必要性を追うという方針で証明してみましたが,こうしてみると次のように同値変形できることに気づきます:

証明

\begin{align*}
&~f(n),f(n+1),f(n+2)\in \mathbb{Z}\\
\overset{(\ast)}{\Longleftrightarrow}&~f(n+1)-f(n)\in\mathbb{Z} ,f(n+2)-f(n+1)\in\mathbb{Z},f(n)\in\mathbb{Z}\\
\Longleftrightarrow&~a_1+a_2n \in \mathbb{Z},a_1+a_2n+a_2\in\mathbb{Z},a_0+a_1+\frac{a_2}{2}n(n-1)\in\mathbb{Z}\\
\Longleftrightarrow&~a_1+a_2n \in \mathbb{Z},a_2\in\mathbb{Z},a_0+a_1+\frac{a_2}{2}n(n-1)\in\mathbb{Z}\\
\Longleftrightarrow&~a_1\in \mathbb{Z},a_2\in\mathbb{Z},a_0+a_1+\frac{a_2}{2}n(n-1)\in\mathbb{Z}\\
\Longleftrightarrow&~a_1\in \mathbb{Z},a_2\in\mathbb{Z},a_0\in\mathbb{Z}
\end{align*}
証明終

\((\ast)\)において,\begin{align*}
&~f(n),f(n+1),f(n+2)\in \mathbb{Z}\\
\Longrightarrow&~f(n+1)-f(n)\in\mathbb{Z} ,f(n+2)-f(n+1)\in\mathbb{Z}
\end{align*}ですが,\(f(n)\in\mathbb{Z}\)を加えることで\(\Leftarrow\)も言え,上のように同値になるというカンジです。

© 2023 佐々木数学塾, All rights reserved.