条件付き確率の直観的理解

条件付き確率の定義事象\(A\),事象\(B\)に対して,確率\[\frac{P(B\cap A)}{P(A)}\]を\(A\)が与えられたときの\(B\)の条件付き確率と呼び,\(P(B|A)\)と書く.

この定義をみても,正直しっくりこないという人は多いと思います.今回はこの条件付き確率の定義の直観的理解を目指してみようと思います.

まず,次の問題を考えてみましょう.

問題
100人の生徒に,次の2つの質問をした.「さんまの内臓を食べるか食べないか」「エビフライのしっぽは食べるか食べないか」.すると,次のような結果を得た.この100人の中から,1人を選び出す.このとき,次の問いに答えよ.

    1. 選び出された生徒が,サンマの内臓を食べる確率
    2. 選び出された生徒が,エビフライのしっぽを食べる確率
    3. 選び出された生徒が,サンマの内臓もエビフライのしっぽも食べる確率
    4. 選び出された生徒が,サンマの内臓は食べるが,エビフライのしっぽは食べない確率
    5. 選び出された生徒が「自分はサンマの内臓は食べますよ~」と発言した.このとき,その生徒がエビフライのしっぽも食べる確率

(解答)

    1. 表をみると全生徒\(100\)人の中でサンマの内臓を食べる人数は\(45\)人ですから,求める確率は\(\frac{45}{100}\)
    2. 表を見ると全生徒\(100\)人の中でエビフライの尻尾を食べる人数は\(67\)人ですから,求める確率は\(\frac{67}{100}\)
    3. 表を見ると全生徒\(100\)人の中でサンマの内臓もエビフライの尻尾も食べる人数は\(35\)人ですから,求める確率は\(\frac{35}{100}\)
    4. 表を見ると全生徒\(100\)人の中でサンマの内臓は食べるが,エビフライの尻尾は食べない人数は\(10\)人ですから,求める確率は\(\frac{10}{100}\)

…と簡単に求められると思います.ここまでウォーミングアップ.問題は5.です.

実際に想像してみましょう.自分の目の前に一人生徒が来た.この生徒がエビフライの尻尾を食べるかどうかを予測したい.そこで,確率を求めようと表を眺めます.この時点では選び出されたその生徒がエビフライの尻尾を食べる確率は\(\frac{67}{100}\)です.図で視覚化すると,

という感じでしょうか.この時点では確率は2.とおんなじです.

しかしここで!その生徒が「自分はサンマの内臓は食べますよ~美味しいですよね~」と喋り,我々がその発言を聞いてしまったとしましょう.すると状況は一変してしまいます.なぜなら,目の前にいる生徒が「サンマの内臓を食べない」という可能性がなくなるから,図中の内臓を食べない(内臓×)という部分が消え失せ,結果として図が下のように変化してしまう(縮んでしまう)からです.

「サンマの内臓を食べる」という発言を聞いてしまった以上,この右側の縮んでしまった図のもとで確率を考え直さねばなりません:全体の人数が\(35+10=45\)で,そのうち尻尾を食べる人数は\(35\)人ですから,求める確率は\(\frac{35}{45}\left(=\frac{7}{9}\right)\)となります.図で視覚化すると,以下のようになります.

このように,「情報が入ることで,図(全事象)が縮む」というのが理解のポイントです.

ではいよいよ上の話を数式に翻訳してみましょう.
題意の確率「『(選び出された生徒が)内臓を食べる』という情報を耳にしたとき,その生徒が尻尾も食べる確率」を\[P(\text{尻尾}|\text{内臓})\]と書くことにしましょう.この確率は,上の議論により
\[
\frac{n(\text{尻尾}\cap \text{内臓})}{n(\text{内臓})}
\]
と書けることになります(下図参照).

したがって,\[P(\text{尻尾}|\text{内臓})=\frac{n(\text{尻尾}\cap \text{内臓})}{n(\text{内臓})}\]
さらに,分母分子を全体の人数\(n(\text{全体})(=100)\)で割ると
\[
\begin{align*}
P(\text{尻尾}|\text{内臓})&=\frac{n(\text{尻尾}\cap \text{内臓})}{n(\text{内臓})}\\
&=\frac{\frac{n(\text{尻尾}\cap \text{内臓})}{n(\text{全体})}}{\frac{n(\text{内臓})}{n(\text{全体})}}=\frac{P(\text{尻尾}\cap \text{内臓})}{P(\text{内臓})}
\end{align*}
\]
となります.したがって,
\[
P(\text{尻尾}|\text{内臓})=\frac{P(\text{尻尾}\cap \text{内臓})}{P(\text{内臓})}
\]
と書けます.さらに,「内臓(内臓を食べる)」という事象を\(A\),「尻尾(尻尾を食べる)」という事象を\(B\)とおけば
\[
P(B|A)=\frac{P(B\cap A)}{P(A)}
\]
となり最初の定義式を得ます.

以上をまとめると,条件付き確率の定義式の直観的イメージは次のようだといえそうです:

    • 情報が入ったことで,全事象が縮んでしまう(事象\(\overline{A}\)が消え,事象\(A\)だけ残る).
    • 縮んだあとの事象\(A\)のもとでの確率を考えることになるから,分母には\(P(A)\)がくる.
    • 分子には,事象\(\overline{A}\)が消えてしまい事象\(A\)だけに縮んでしまった,そのもとでの事象\(B\),すなわち事象\(B\cap A\)の確率\(P(B\cap A)\)がくる.

定義式\(P(B|A)=\frac{P(B\cap A)}{P(A)}\)は上の図のイメージ,すなわち「全事象が縮んだあとの確率計算」という認識をもっておくことが直観的理解のコツ,ということです.

ちなみに,\(P(B|A)\)は高校教科書では\(P_A(B)\)と表現していることに注意してください.どちらも同じ意味で,正しい記法です.が,個人的には\(P(B|A)\)の方をおすすめします.記述の際に書きやすいし,何より気持ち的に\(A\)が\(B\)の『後側』にあることから「\(A\)が\(B\)『背景』にあるんだよ」というニュアンスが伝わりやすいからです.