逆手流(存在条件に言い換える)

\(y=x+1~(0 \leq x \leq 2)\)の値域をもとめよ.

この問題を2通りの解法で解いてみます.

(解法1)

定義域\(0 \leq x \leq 2\)に属する\(x\)に対応する\(y\)を調べます.

\(x=0\)に対応する\(y\)は?\(y=0+1=1\).
\(\hspace{35mm}\vdots\)
\(x=1\)に対応する\(y\)は?\(y=1+1=2\).
\(\hspace{35mm}\vdots\)
\(x=2\)に対応する\(y\)は?\(y=2+1=3\).

と調べていけば,\(1\leq y \leq 3\)と求まります.この頭の動きを図示すると,

のようになります.矢印の向きに注意してください.重要なのは次の(解法2)の考え方です.

(解法2)

頭の中で何でもいいから実数を思い浮かべてください.
ここでは例えば,
\[2\]
と頭に思い浮かべたとしましょう.

次に,その\(2\)に対応する\(x\)の値を求めてください.
\[2=x+1~\Longleftrightarrow~x=1\]
よって,\(1\)と分かります.

では,例えば\(4\)ならどうでしょう?\(3\)に対応する\(x\)を調べてみます.
\[4=x+1~\Longleftrightarrow~x=3\]
よって,\(3\)と分かります.

さて,今二つの例を挙げましたが,この二つの例の違いは何でしょうか?それは,

\(2\)に対応する\(x\)は,定義域にある(存在する).
\(4\)に対応する\(x\)は,定義域にはない(存在しない).

ということです.図示すると,

これを,それぞれ次のように解釈します.

「\(2\)に対応する\(x\)が定義域に存在する\(~\Longrightarrow~\)\(2\)は求める値域(の点の1つ)」
「\(3\)に対応する\(x\)が定義域に存在しない\(~\Longrightarrow~\)\(3\)は値域(の点の1つ)ではない」

また,「値域」「定義域」という言葉の定義から逆も成り立つのは明らかですから,結局,

「\(2\)に対応する\(x\)が定義域内に存在する\(~\Longleftrightarrow~\)\(2\)は求める値域(の点の1つ)」
「\(3\)に対応する\(x\)が定義域内に存在しない\(~\Longleftrightarrow~\)\(3\)は値域(の点の1つ)ではない」

と言えます.したがって,「\(y=2\)は値域上の点だが\(y=3\)は値域上の点ではない」と分かります.

以上の考え方(頭に何か数字を思い浮かべ,その数に対応する\(x\)を調べ,それが定義域内にあるかどうかを調べる)を用いて他の点についても調べてみましょう.色々な点を頭に思い浮かべて….\(4,~1,~1.5,~0.5,~5,~\frac{7}{2},~3,~\frac{5}{2},~-\frac{1}{2},~-1\cdots\)

\(4\)に対応する\(x\)は?
\(3\)です.\(3\)は定義域の点ではないので,値域の点ではありません.すなわち,
「\(4\)に対応する\(x\)が定義域に存在しない\(~\Longleftrightarrow~\)\(4\)は求める値域(の点の1つ)ではない」

\(1\)に対応する\(x\)は?
\(0\)です.\(0\)は定義域の点なので,値域の点のひとつです.すなわち,
「\(1\)に対応する\(x\)が定義域に存在する\(~\Longleftrightarrow~\)\(1\)は求める値域(の点の1つ)である」

\(\frac{3}{2}\)に対応する\(x\)は?
\(\frac{1}{2}\)です.\(\frac{1}{2}\)は定義域の点なので,値域の点のひとつです.すなわち,
「\(\frac{3}{2}\)に対応する\(x\)が定義域に存在する\(~\Longleftrightarrow~\)\(\frac{3}{2}\)は求める値域(の点の1つ)である」

\(\frac{1}{2}\)に対応する\(x\)は?
\(-\frac{1}{2}\)です.\(-\frac{1}{2}\)は定義域の点ではないので,値域の点ではありません.すなわち,
「\(\frac{1}{2}\)に対応する\(x\)が定義域に存在しない\(~\Longleftrightarrow~\)\(\frac{1}{2}\)は求める値域(の点の1つ)ではない」
\(\hspace{80mm}\vdots\)

と調べていけば,徐々に欲しい値域らしきものが求まっていくことが想像できると思います.
しかし,「数を頭に思い浮かべて~」とは言うものの思い浮かべ得る点は当然ながら無限です.その無限の数に対し上の考察を無限回行うわけにはいきません.そこでどうするか?文字を使いましょう.頭に思い浮かべ得る数の代表の文字として\(k\)を用います.そして上と同様の同値変形を行います.すなわち,
\[\text{\(k\)は求める値域(の点の1つ)である\(~\Longleftrightarrow~\)\(k\)に対応する\(x\)が定義域内に存在する}\]
さらに同値変形を続けて,
\[
\begin{align*}
&\text{\(k\)は求める値域(の点の1つ)である}\\
\Longleftrightarrow~&\text{\(k\)に対応する\(x\)が定義域に存在する}\\
\Longleftrightarrow~&\text{\(k=x+1\)をみたす\(x\)が定義域に存在する}\\
\Longleftrightarrow~&\text{\(x=k-1\)をみたす\(x\)が定義域に存在する}\\
\Longleftrightarrow~&\text{\(x=k-1,~0 \leq x \leq 1\)をみたす\(x\)が存在する}\\
\Longleftrightarrow~&0 \leq k-1 \leq 1\\
\Longleftrightarrow~&1 \leq k \leq 2
\end{align*}
\]
よって求める値域が\(1 \leq k \leq 2\)と求まります.

今回は簡単な値域の問題でしたので,「こんな面倒なことするくらいなら(解法1)のほうがいいだろ」と思うかもしれません.が,この考え方は値域の問題ばかりではなく,軌跡や領域の問題において根幹となる重要な考え方になります.

以上の解法(考え方)「存在条件に同値変形して処理」するこの手法を,雑誌「大学への数学」では「逆手流」と名付けています.記事のタイトルはこの名称を使わせて頂きました.

また,上の論理式において「\(k\)は求める値域(の点の1つ)である」を「\(k\in \text{値域}\)」と表し,さらに全称記号と存在記号を用いて記述すると以下のようになります.

\[
\begin{align*}
&k \in \text{値域}\\
\Longleftrightarrow~&\exists x \big[\text{\(k\)に対応する\(x\)が定義域上}\big]\\
\Longleftrightarrow~&\exists x \big[\text{\(k=x+1\)をみたす\(x\)が定義域上}\big]\\
\Longleftrightarrow~&\exists x \big[\text{\(x=k-1\)をみたす\(x\)が定義域上}\big]\\
\Longleftrightarrow~&\exists x \big[\text{\(x=k-1 \land ~0 \leq x \leq 1\)}\big]\\
\Longleftrightarrow~&0 \leq k-1 \leq 1\\
\Longleftrightarrow~&1 \leq k \leq 2
\end{align*}
\]

「すべて」「存在する」の否定

以下,\(x\in \{x_1,~x_2,~x_3,\cdots ,x_n\}\)とする.

\(\overline{\forall x~p(x)} \Longleftrightarrow \exists x~\overline{p(x)}\)

証明

\[
\begin{align*}
&\overline{\forall x~p(x)}\\
\Longleftrightarrow~&\overline{p(x_1)\land p(x_2)\land p(x_2)\land \cdots \land p(x_n)}\\
\Longleftrightarrow~&\overline{p(x_1)}\lor \overline{p(x_2)}\lor \overline{p(x_2)}\lor \cdots \lor\overline{p(x_n)}\\
\Longleftrightarrow~&\exists x~\overline{p(x)}&\textbf{(証明終)}
\end{align*}
\]

\(\overline{\exists x~p(x)} \Longleftrightarrow \forall x~\overline{p(x)}\)

証明

\[
\begin{align*}
&\overline{\exists x~p(x)}\\
\Longleftrightarrow~&\overline{p(x_1)\lor p(x_2)\lor p(x_2)\lor \cdots \lor p(x_n)}\\
\Longleftrightarrow~&\overline{p(x_1)}\land \overline{p(x_2)}\land \overline{p(x_2)}\land \cdots \land\overline{p(x_n)}\\
\Longleftrightarrow~&\forall x~\overline{p(x)}&\textbf{(証明終)}
\end{align*}
\]

\(\forall\)(すべての)を否定すると\(\exists\)(存在する)となり,\(\exists\)(存在する)を否定すると\(\forall\)(すべての)となります.

\(\exists x \forall y\)と\(\forall y \exists x\)の違い

並びが違うだけのように見えますが意味は全く異なります.\(p(x,~y)\)を条件とします.

\(\exists x \forall y~p(x,~y)\)は「\(x\)が存在して,任意の\(y\)に対して\(p(x,~y)\)が成り立つ」となります.最初に「存在して」と言っているあたりが慣れないと気持ち悪いと思います.なので言い換えると,「任意の\(y\)に対して\(p(x,~y)\)が成り立つような\(x\)が,\(y\)とは無関係に存在する」となります.

ポイントは,\(x\)は\(y\)に依存していないということです.

他方,\(\forall y \exists x ~p(x,~y)\)は「どんな\(y\)に対しても,それに対応して\(x\)が存在して,\(p(x,~y)\)が成り立つ」ということです.やはり「存在して」が先に来ると違和感がある人は「\(p(x,~y)\)が成り立つような\(x\)が,\(y\)に応じて存在する」と言い換えればよいと思います.

こちらは\(x\)は\(y\)に依存しているということがポイントです.

【具体例】

条件\(p(x,~y)\)を「\(x\)は\(y\)の親である」という条件とします(\(x,y\in \text{人類}\)).このとき,

\(\exists x \forall y~p(x,~y)\)は,
\[\exists x \forall y~[~\text{\(x\)は\(y\)の親である}~]\]
となります.これを翻訳すると「人間\(x\)が存在して,その人間\(x\)はすべての人間\(y\)の親である」,あるいは「どんな人間\(y\)にとっても親となる人間\(x\)が(その人間\(y\)が誰であるかとは無関係に)存在する」となります.

・・・この命題は常識的に考えれば真とは言いづらいですね^^;宗教のようなある種の信仰を持っている人にとってはこの命題も真と言えるのかもしれませんが.

他方,\(\forall y \exists x ~p(x,~y)\)は,

\[\forall y \exists x ~[~\text{\(x\)は\(y\)の親である}~]\]

これを翻訳すると「どんな人間\(y\)に対しても,その人間\(y\)に対応して\(x\)という人間が存在し,\(x\)と\(y\)との間に親子関係が成り立つ」あるいは「どんな人間\(y\)に対しても,その人間に応じて親\(x\)が存在する」となります.

・・・この命題は明らかに真でしょう.(クローン人間など特殊な例を考えない限り)物理的に人間から生まれなかった人間はいませんから.

以上,\(\exists x \forall y\)と\(\forall y \exists x\)の違い,それは\(x\)と\(y\)の間に関係(対応)があるかないか,ということです!

いわゆる「場合分け」って

\(ax^2-2x-a=0\)を解け.ただし,\(a\)は定数とする.

「(ア)\(a=0\)のとき~(イ)\(a\neq0\)のとき~,」という,\(a\)が0かどうかで場合分けするお馴染みの問題です。これを論理式で記述すると

\[
\begin{align*}
&ax^2-2x-a=0 \land(a=0 \lor a \neq 0)\\
\Longleftrightarrow~ & (ax^2-2x-a=0 \land a=0) \lor (ax^2-2x-a=0 \land a \neq 0)\\
\Longleftrightarrow~ & (0-2x-0=0 \land a=0) \lor \left(x=\frac{1\pm\sqrt{1^2-a\cdot(-a)}}{a} \land a \neq 0 \right)\\
\Longleftrightarrow~ & (x = 0 \land a=0) \lor \left(x=\frac{1\pm\sqrt{1+a^2}}{a} \land a \neq 0 \right)
\end{align*}
\]

となります。

軌跡の問題を論理式で記述する

2直線\(kx+2y-k+4=0\)と\(2x-ky+6-2k=0\)がある.\(k\)の値が変化するとき,この2直線の交点の軌跡の方程式を求めよ.

網羅系問題集には必ず載ってる軌跡の有名問題です.この手の問題に難儀した人は少なくないと思います.初めて見る人はこれを教科書で学んだ方法で解答を作成してみましょう.正解ならOK(軌跡に「漏れ」や「余計なもの」が入っていたらそれは正解とはいいませんよ).不正解なら以下を読んでみてください.

論理式で記述してみます.

求める軌跡上の点を\((X,~Y)\)とします.「\((X,~Y)\)が軌跡上の点である」ということを「\((X,~Y)\in\text{軌跡}\)」と表すことにします.この「\((X,~Y)\in\text{軌跡}\)」を同値変形することを考えます.

\[
\begin{align*}
&(X,~Y)\in\text{軌跡}\\
\Longleftrightarrow~&\exists k\begin{cases}
kX+2Y-k+4=0\\
2X-kY+6-2k=0
\end{cases}\tag{1}\\
\Longleftrightarrow~&\exists k\begin{cases}
(X-1)k=-2Y-4\\
2X-kY+6-2k=0
\end{cases}\\
\Longleftrightarrow~&\exists k\begin{cases}
(X-1)k=-2Y-4\land(X-1=0 \lor X-1\neq 0)\\
2X-kY+6-2k=0\tag{2}
\end{cases}\\
\Longleftrightarrow~&\exists k\begin{cases}
((X-1)k=-2Y-4\land X-1=0) \lor ((X-1)k=-2Y-4\land X-1\neq 0)\\
2X-kY+6-2k=0\tag{3}
\end{cases}\\
\Longleftrightarrow~&\exists k\begin{cases}
(0\cdot k=-2Y-4\land X=1) \lor (k=\frac{-2Y-4}{X-1}\land X\neq 1)\\
2X-kY+6-2k=0
\end{cases}\\
\Longleftrightarrow~&\exists k\begin{cases}
(X=1\land Y=-2) \lor (k=\frac{-2Y-4}{X-1}\land X\neq 1)\\
2X-kY+6-2k=0
\end{cases}\\
\Longleftrightarrow~&\exists k\left(((X=1\land Y=-2) \lor (k=\frac{-2Y-4}{X-1}\land X\neq 1))\land 2X-kY+6-2k=0\right)\\
\Longleftrightarrow~&\exists k\left((X=1\land Y=-2\land 2X-kY+6-2k=0) \lor (k=\frac{-2Y-4}{X-1}\land X\neq 1\land 2X-kY+6-2k=0)\right)\tag{4}\\
\Longleftrightarrow~&\exists k(X=1\land Y=-2\land 2X-kY+6-2k=0) \lor \exists k(k=\frac{-2Y-4}{X-1}\land X\neq 1\land 2X-kY+6-2k=0)\tag{5}\\
\Longleftrightarrow~&\exists k(X=1\land Y=-2\land 2\cdot 1-k\cdot (-2)+6-2k=0) \lor (X\neq 1\land 2X-\frac{-2Y-4}{X-1}Y+6-2\frac{-2Y-4}{X-1}=0)\tag{6}\\
\Longleftrightarrow~&\exists k(X=1\land Y=-2\land 0\cdot k+8=0) \lor (X\neq 1\land X^2+2X+Y^2+4Y+1=0)\tag{7}\\
\Longleftrightarrow~&X\neq 1\land (X+1)^2+(Y+2)^2=4\tag{8}\\
\end{align*}
\]

となって求める軌跡の方程式を得ます.通常の解答を見るとわかりますが,読めばとりあえず理解はできるものの,いざ自分で解答をつくれと言われると次に何をやればよいのか見えずらく(必然性が感じられず)不安に感じるタイプの問題ではないでしょうか.で,結局半ば流れを「覚えよう」となるっていう.しかし,上で見るように論理式で記述すると機械的な変形(次にすべきことが明解で迷いがない,もはや「計算」するような感覚)により答えを得ることがきます.これが論理式の強力な点だと思います.

ただし上の変形は論理に関する様々な知識を使っています.

\((1)\)は存在条件への言い換えです.
\((2)\)は恒真条件\(X-1=0\lor X-1\neq 0\)の追加
\((3)\)は分配法則
\((4)\)は分配法則
\((5)\)は存在記号の分配法則
\((6)\)後半は存在記号があるので\(k\)を消去できて
\((7)\)の前半は矛盾命題なので\((8)\)と同値になります.

(というか数式がはみ出て見づらくてすみません…)

存在記号は分配できるか?

できます(かつ(\(\land\))に関して).なぜなら,

\[\forall x[p(x)\land q(x)]~\Longleftrightarrow \forall x p(x)\land \forall x q(x)\]であるから,この命題の待遇を考えると,

\[\lnot(\forall x[p(x)\land q(x)])~\Longleftrightarrow \lnot(\forall x p(x)\land \forall x q(x))\]

すなわち

\[\exists x[\lnot p(x)\lor \lnot q(x)]~\Longleftrightarrow \exists x \lnot p(x)\lor \exists x \lnot q(x)\]

となります.\(\lnot\)は否定を表す記号です.ですから,

\[\exists x[\overline{p(x)}\lor \overline{q(x)}]~\Longleftrightarrow \exists x \overline{ p(x)}\lor \exists x \overline{q(x)}\]

とも書けますね.見やすさのために\(\overline{p(x)}\)を\(p(x)\)に,\(\overline{q(x)}\)を\(q(x)\)に改めて書き換えれば,
\[\exists x[p(x) \lor q(x)]~\Longleftrightarrow \exists x p(x)\lor \exists x q(x)\]
となります.

注意:ただし,存在記号はかつ(\(\land\))に関しては分配できません!すなわち,\[\exists x[p(x) \land q(x)] \Longrightarrow \exists x p(x) \land \exists xq(x)\]であって,この逆は成り立ちません.これは具体例を考えれば分かりやすい.仮に全体集合をあるクラスだとして,\(p(x)\)を「\(x\)は勉強が得意」\(q(x)\)を「\(x\)はスポーツが得意」だとします.すると,\(\exists x[p(x) \land q(x)]\)は「勉強もスポーツも両方得意な生徒がいる」となり,\(\exists x p(x) \land \exists xq(x)\)は「勉強が得意な生徒がいて,かつ,スポーツが得意な生徒もいる」となります.\(\Longrightarrow\)が成り立つのは当たり前でしょう.\(\Longleftarrow\)について考えます.「(そのクラスに)勉強が得意な生徒がいて,スポーツが得意な生徒もいるのなら,勉強もスポーツも両方得意な生徒がいる」となりますが,これは正しいでしょうか.少し考えればわかるように明らかに正しくないですね.反例.仮定を満たすクラスとして,「勉強は超得意だけどスポーツはダメダメな秀才君がいて,スポーツは超得意だけど勉強はからっきしの脳筋君がいる.そしてクラスの他の生徒たちは勉強もスポーツもとくに得意とは言えない,いたってフツーの生徒,そんなクラスが例えば考えられます.このクラスには明らかに「勉強もスポーツも両方得意な生徒」はいることにはなりませんね.

任意記号は分配できるか?

\(p(x),~q(x)\)を条件とする.\(\forall\)は「任意記号(または全称記号)」と呼び,「任意の(Any),すべての(for All)」という意味です.Aをひっくり返して\(\forall\).このとき,

\[\forall x[p(x)\land q(x)]~\Longleftrightarrow \forall x p(x)\land \forall x q(x)\quad \cdots (\ast)\]

が成り立ちます.例えば,\(p(x)\)を「\(x\)は勉強が得意」という条件,\(q(x)\)を「\(x\)はスポーツが得意」という条件だとしましょう.このとき,\(\forall x[p(x)\land q(x)]\)は

\[\text{全員,勉強とスポーツ両方得意}\]

という意味になります.イメージし易さのため,\(x\in \text{(とあるクラス)}\)とすると,

\[\text{このクラスの全員が,勉強とスポーツ両方得意}\]

となります.いわば,スーパーマンみたいな奴だけで構成されたクラスですね,そんなクラスをイメージしてください.

他方,\(\forall x p(x)\land \forall x q(x)\)は\[\text{このクラスの全員が勉強が得意で,かつ,このクラスの全員がスポーツが得意}\]という意味になります.

これらの「翻訳」に従って,上の\((\ast)\)を記述し直してみると,

\begin{align*}
&\text{このクラスの全員が,勉強とスポーツ両方得意}\\
\Longleftrightarrow~&\text{このクラスの全員が勉強が得意で,かつ,このクラスの全員がスポーツが得意}
\end{align*}

ということになります.このようにイメージすると,\((\ast)\)の\(\Longleftarrow\)も\(\Longrightarrow\)もどちらも成り立つこと,すなわち同値であることが容易に納得できます.

注意:ただし,任意記号はまたは(\(\lor\))に関しては分配できません

「存在する」の扱い

\[
\begin{align*}
\begin{cases}
x=a\\
x=b
\end{cases}
\end{align*}
\]

ここから短絡的に\(x\)を消去して\(a=b\)としても同値とはなりません.しかしもし,

\[
\begin{align*}
\begin{cases}
x=a\\
x=b
\end{cases}
\end{align*}\text{を満たす\(x\)が存在する}
\]

なら,\(a=b\)と同値であると言えます(\(x\)は文字通り消える).この二者の違いは,「存在する」という一言があるかないかです.この「存在する」について議論してみたいと思います.簡単のため,上を論理式で記述してみます.「\(x\)が存在する」は「\(\exists x\)」と書けますから(\(\exists\)はExistの頭文字をひっくり返したものです),

\[
\begin{align*}
\exists x
\begin{cases}
x=a\\
x=b
\end{cases}
\Longleftrightarrow~a=b
\end{align*}
\]

となります.一般に,条件を\(p(x)\)で表すことにすると,

\[
\begin{align*}
\exists x
\begin{cases}
p(x)\\
x=a
\end{cases}
\Longleftrightarrow~p(a)
\end{align*}
\]

が成り立ちます.

【証明】

(\(\Rightarrow\))仮定より,条件\(p(x)\)と\(x=a\)をみたす\(x\)が存在する.今,これを\(\alpha\)とおく.このとき,\[p(\alpha)\land \alpha=a\]すなわち\[p(a)\]が成り立つ.

(\(\Leftarrow\))仮定より,\(p(x)\)をみたす\(x\)が存在する.その\(x\)は\(a\)である.そしてこの\(a\)は方程式\(x=a\)を明らかにみたしている.ゆえに,\(p(x)\land x=a\)をみたす\(x\)が(\(a\)として)存在する.

(証明終)

これは様々な同値変形で用いるとても重要な考え方になります.
とくに連立方程式においては,「消去する」などといいつつも文字は消えるわけではないのですが,しかし「存在する」のであれば,消えてなくなります.この違いに注意しておきたいです.

2次方程式の共通解問題(その1)

\(2\)つの\(2\)次方程式\(x^2+kx+2=0,~2x^2+kx+1=0\)が共通解をもつように定数\(k\)の値を定めよ。

この問題の定石的解法は「共通解を\(\alpha\)とおいて代入して連立せよ」ですが,具体的には何をしているのか,論理式を用いてみてみます。

解答

\begin{align*}
&\exists x
\begin{cases}
x^2+kx+2=0\\
2x^2+kx+1=0
\end{cases}\\
\Longleftrightarrow~&\exists x
\begin{cases}
x^2+kx+2=0 \\
2x^2+kx+1-(x^2+kx+2)=0
\end{cases}&\cdots (1)\\
\Longleftrightarrow~&\exists x
\begin{cases}
x^2+kx+2=0\\
x^2-1=0
\end{cases}\\
\Longleftrightarrow~&\exists x
\begin{cases}
x^2+kx+2=0\\
x=-1 \lor x=1
\end{cases}&\cdots (2)\\
\Longleftrightarrow~&\exists x [x^2+kx+2=0 \land (x=-1 \lor x=1)]&\cdots (3)\\
\Longleftrightarrow~&\exists x [(x^2+kx+2=0 \land x=-1) \lor (x^2+kx+2=0 \land x=1)]&\cdots (4)\\
\Longleftrightarrow~&\exists x (x^2+kx+2=0 \land x=-1) \lor \exists x(x^2+kx+2=0 \land x=1)]&\cdots (5)\\
\Longleftrightarrow~& (-1)^2+k(-1)+2=0 \lor 1^2+k\cdot1+2=0 &\cdots (6)\\
\Longleftrightarrow~&k=3 \lor k=-3\\
\end{align*}

よって\(k=\pm 3\).

解答終

一般的な解答で感じられる一種の不安感は論理式で記述すれば払拭できると思います。
ただし,ここでは様々な同値変形\((1)\)~\((6)\)を用いています。それぞれの同値変形について,順を追ってみてみると

まず\((1)\)は連立方程式の解法は・・・「文字を減らす方針」?で紹介した同値変形です。

\((2)\)は,この記事でとりあげている同値変形です。

\((3)\)は,連立方程式における\(\{\)は「かつ(\(\land\))」を表すためです。

\((4)\)は,かつ(\(\land\)),または(\(\lor\))の分配法則によります。

\((5)\)は,存在記号がまたは(\(\lor\))に関して分配できることによります。

\((6)\)存在記号\(\exists\)があれば代入することで文字を消去することができます。

(関連:2次方程式の共通解問題(その2)

© 2022 佐々木数学塾, All rights reserved.