位置ベクトルの利用

座標空間において,\(3\)点\(A(0,1,1),B(2,2,3),C(4,0,2)\)を通る平面に関して,点\(P(9,1,1)\)と対称な点の座標を求めなさい.

(実用数学検定\(1\)級 計算技能検定)

数検の計算問題ですが,「対称点の座標が欲しい」というのは大学入試問題でもよく出会うシチュエーションだと思います.いろいろな解法が考えられますが,ここでは位置ベクトルを用いて求めてみます.作戦はこうです:

求める点の座標を\(P’\)とします.位置ベクトルの定義により,空間上の座標\(P’\)とベクトル\(\overrightarrow{OP’}\)の成分は1対1に対応してますから,\(\overrightarrow{OP’}\)を求まるということそれは空間上の座標\(P’\)が求まることに等しい.そこで\(\overrightarrow{OP’}\)を求めることにします.点\(P\)から平面上に下した垂線の足の座標を\(H\)とおけば,\(\overrightarrow{OP’}=\overrightarrow{OP}+2\overrightarrow{PH}\)とできます.\(\overrightarrow{PH}\)を求めます.

ここで,正射影ベクトル\((\overrightarrow{AP}\cdot\overrightarrow{e})\overrightarrow{e}\)は\(\overrightarrow{HP}\)に等しい(\(\overrightarrow{e}\)は平面に垂直な単位ベクトル,外積によって直ちに求まる).したがって\begin{align*}
\overrightarrow{OP’}=&\overrightarrow{OP}+2\overrightarrow{PH}\\
=&\overrightarrow{OP}-2(\overrightarrow{AP}\cdot\overrightarrow{e})\overrightarrow{e}
\end{align*}となる.\(\overrightarrow{AP}=\left(\begin{array}{c}9\\0\\0\end{array}\right)\),そして\(\overrightarrow{e}=\dfrac{1}{3}\left(\begin{array}{c}1\\2\\-2\end{array}\right)\)であるから,
\begin{align*}
\overrightarrow{OP’}=&\left(\begin{array}{c}9\\1\\1\end{array}\right)-2\left(\left(\begin{array}{c}9\\0\\0\end{array}\right)\cdot \dfrac{1}{3}\left(\begin{array}{c}1\\2\\-2\end{array}\right)\right)\dfrac{1}{3}\left(\begin{array}{c}1\\2\\-2\end{array}\right) = \left(\begin{array}{c}7\\-3\\5\end{array}\right)
\end{align*}したがって求める座標は\((7,-3,5)\)と求まります.

「座標が欲しければ位置ベクトル調べればいいじゃん」というシンプルな発想で片付き,また未知数を設定する必要もなく,計算量も少ない.そして何よりその「(空間上の)座標を知りたい」なんて状況はそれこそ頻繁に出会うシチュエーションです(サイクロイド等の媒介変数表示,複素数の回転など).これが位置ベクトルの‘嬉しい点’であり,位置ベクトルを学ぶ意味だと思う.しかし教科書ではこれを強調しないし,教える側も教科書に右ならえ….が,受験生としては空間上の座標を求める際の強力な手法としてぜひ常識としてほしい手法の一つです.

階差数列

ここに数列\((a_n)_{n\in\mathbb{N}}\)があるとします.
\[a_1,~a_2,~a_3,~\cdots,a_n\]\(a_n\)を求めましょう.\(a_n\)を求めるためには,
と考えることで
\[
a_n=a_1+(a_2-a_1)+(a_3-a_2)+(a_4-a_3)+\cdots+(a_n-a_{n-1})
\]とかけることがわかります.ただし,この式は\(n=1\)のときは\(a_0\)が出現してしまい成り立たないので,\(n \geq 2\)のもとで成り立つ式であることに注意します.ここに現れる数列\((a_n-a_{n-1})_{n\in\mathbb{N}}\)を,階差数列と呼びます.この式を\(\sum\)記号を用いて少し変形すると
\begin{align*}
a_n=&a_1+(a_2-a_1)+(a_3-a_2)+(a_4-a_3)+\cdots+(a_n-a_{n-1})\tag{1}\\
=&a_1+\displaystyle \sum_{k=1}^{n-1}(a_{k+1}-a_{k})\tag{2}\\
=&a_1+\displaystyle \sum_{k=2}^{n}(a_k-a_{k-1})\\
=&a_1+\displaystyle \sum_{k=0}^{n-2}(a_{k+2}-a_{k+1})
\end{align*}などと変形できることも分かります.さらに,\((2)\)の\(a_{k+1}-a_{k}\)を\(b_k\)とおいたものが,教科書でもお馴染みの公式\[a_n=a_1+\displaystyle \sum_{k=1}^{n-1}b_k\tag{3}\]ですね.

さて,ここまでで見た式\((1),(2),(3)\)の中で覚えるべき式はどれでしょうか.一般的(教科書的)には,最終的な結果である\((3)\)だけでしょう.これを「公式」として覚えておいて,あとはこれを機械的に使うという人がほとんどかと思います.例えば,こういう問題

次の数列\((a_n)_{n \in \mathbb{N}}\)の一般項を求めよ.\[1,~3,~7,~13,~21,~\cdots\]

「あ,階差数列は\(b_n=2n\)だ!→公式!」と考え\[a_n = \displaystyle 1 + \sum_{k=1}^{n-1}2k \quad (n \geq 2)\]とすることと思います.他にも,

次の条件で表される数列\((a_n)_{n\in \mathbb{N}}\)の一般項を求めよ.\[a_1=1,~a_{n+1}-a_{n}=4^n\]

など.これもやはり「あ,階差数列だ!→公式!」と考え,
\[a_n=1+\displaystyle \sum_{k=1}^{n-1} 4^k \quad (n \geq 2)\]と計算することと思います.では,次はどうでしょう.大学入試問題です.

次の条件で表される数列\((a_n)_{n\in \mathbb{N}}\)の一般項を求めよ.
\[a_1=2,~(n-1)a_n=na_{n-1}+1 \quad (n=2,3,\cdots)\]

まずは両辺を\(n(n-1)\)で割って,
\[\frac{a_n}{n}=\frac{a_{n-1}}{n-1}+\frac{1}{n(n-1)}\]移項して,\(\frac{a_n}{n}=b_n\)とおくことで「階差」タイプに帰着します:
\[b_n-b_{n-1}=\frac{1}{n(n-1)}\]ここで,\((3)\)の結果だけを機械的に覚えていると,「あ,階差数列だ!→公式!」からの
\[b_n=b_1+\displaystyle \sum_{k=1}^{n-1} \frac{1}{k(k-1)} \quad (n \geq 2)\quad \text{※誤答}\]
という式になります.で,あれ?\(k=1\)で分母が\(0\)になるぞ?教科書ではうまくいったはずだが??まあその辺はゴニョゴニョ….

一般に,教科書で扱う例題・練習題のほとんどは親切(?)にも公式を機械的に使いさえすれば正答が得られる問題によって構成されています.でも,入試問題がそんな忖度をしてくれるとは限りません.実戦の場で,恐る恐る怪しい解答を一か八かで作るくらいなら,上で見たように,階差数列の成り立ちに立ち戻って確実な解答を作成しよう,と考えるべきです:

解答

\(n \geq 2\)のとき,\[b_n=b_1+(b_2-b_1)+(b_3-b_2)+(b_4-b_3)+\cdots+(b_n-b_{n-1})\]が成り立つ.この式を\(\sum\)記号を用いて表す.今着目している漸化式が\(b_n-b_{n-1}\)という形であるから,これが利用できるように,\(\sum\)の後ろは\(b_k-b_{k-1}\)という形で表すことにする.これに伴い,始まりの\(k\)は\(2\),終わりの\(k\)は\(n\)であることに注意して
\begin{align*}
b_n&=b_1+\displaystyle \sum_{k=2}^{n}(b_k-b_{k-1})\\
&=b_1+\displaystyle \sum_{k=2}^{n}\frac{1}{k(k-1)}\quad(n \geq 2)
\end{align*}と変形する.(以下略)

解答終

このように,結果である\((3)\)を機械的に使おうとするのではなく,その結果に至るまでの過程を再現しようという姿勢で式を作れば,必然的に正答に辿り着くはずです.というわけで,覚えるなら以下のように覚えるのがおすすめです:

\(n\geq 2\)のとき
\begin{align*}
a_n=&a_1+(a_2-a_1)+(a_3-a_2)+(a_4-a_3)+\cdots+(a_n-a_{n-1})\\
=&a_1+\displaystyle \sum_{k=1}^{n-1}(a_{k+1}-a_{k})\left(=a_1+\displaystyle \sum_{k=2}^{n}(a_k-a_{k-1})=a_1+\displaystyle \sum_{k=0}^{n-2}(a_{k+2}-a_{k+1})\right)\\
=&a_1+\displaystyle \sum_{k=1}^{n-1}b_k
\end{align*}

とくに一行目!二行目は上のように与えられた問題に応じて調整して作る.一番有名な三行目はもはやオマケみたいなもの,というわけです.したがって結果的に,覚えるべきは一行目のみですが,しかしこれは「目的の項\(a_n\)に行きつくまでにはそこまでの差を次々と足し加えればいい」という至極アタリマエな事実に過ぎず,その意味でこれはもはや「覚える」という意識すら必要なくなります.

このように,「結果を覚える」だけでなく,その成り立ちまで含めて理解しておく,つまり単純記憶ではなく理屈によって知識を保持しておくと,余計な記憶をせずに済みますし,なにより自信をもって解答を記述できます.その意味で,天下り的に与えれらた見かけ上の結果だけを貰って満足するのではなく,論理を頼りに根っこの方を追いかけて,そのリクツを知ろうとする姿勢は大事だと思います.「結果を覚えるだけ」の勉強に比べ,一見遠回りですが,そんな姿勢は結果的にはより汎用性のある力に繋がりますから.

数学的帰納法

前回の「任意」について思い出したことをひとつ.

次のような命題の証明について考えてみます.\(p(n)\)は条件,\(n\)を自然数とします.

\[\forall n~p(n) \tag{\(\ast\)}\]

この命題は,
\[\text{どんな\(n\)についても\(p(n)\)が真である}\]
ということですから,
\[p(1),~p(2),~p(3),~p(4),~\cdots~\text{が真である}\]
ことを証明する,ということです.(これが目標).これを証明するには,どうすればよいかを考えます.

まず,\[p(1)\text{が真である}\tag{A}\]ことを示します.続いて,\[p(2),p(3),\cdots \text{が真である}\]ことも同様に示していけばよい・・・と言いたいところですが,当然,無限回の考察は現実的には不可能です。そこで,天下りですが次の命題を考えます.

\[p(n) \Longrightarrow p(n+1)\tag{B}\]

この命題は,
\[\forall n[p(n) \longrightarrow p(n+1)]\]
すなわち,
\[\text{すべての\(n\)について\(p(n) \rightarrow p(n+1)\)が成り立つ}\]
ということですから,\(n=1,2,3,\cdots\)と代入して

\[
\begin{cases}
&\text{\(p(1) \rightarrow p(2)\)が成り立つ}\\
&\text{\(p(2) \rightarrow p(3)\)が成り立つ}\\
&\text{\(p(3) \rightarrow p(4)\)が成り立つ}\\
&\cdots
\end{cases}\tag{B’}
\]

と言い換えられることになります.この命題(B)(すなわち(B’))が証明できたとしましょう.そのとき,どのようなこことがわかるか,ご利益をみてみます.

「\(p(1) \rightarrow p(2)\)が成り立つ」について見てみます.真理値表
\(p(1) \rightarrow p(2)\)が真となる行に着目すると,次の①②③の3通りの状況が考えられます.


しかし,\(p(1)\)が真であることは既に(A)で確認済みなので,\(p(1)\)の列が偽となる②と③の状況は起こり得ず,結局①の状況しかありえません。この①の行を眺めると,\(p(2)\)も真であることが分かります.これで,\(p(1)\)と\(p(2)\)が真であることがわかりました.

同様に考えて,
「\(p(2) \rightarrow p(3)\)が成り立つ」ことから,\(p(3)\)も真となります.
「\(p(3) \rightarrow p(4)\)が成り立つ」ことから,\(p(4)\)も真となります.
「\(p(4) \rightarrow p(5)\)が成り立つ」ことから,\(p(5)\)も真となります.

となり,結局,\[p(1),~p(2),~p(3),~p(4),~\cdots~\text{が真である}\]であること,すなわち冒頭の命題\[\forall n~p(n) \tag{\(\ast\)}\]が証明されました.命題(B)を示すご利益は,ここにあったというわけです.

以上をまとめると,\((\ast)\)を証明するためには,命題(A)かつ(B),すなわち\[p(1) \land (p(n) \Rightarrow p(n+1))\]
を確認すればよい,ということがわかります.すなわち,

数学的帰納法\[p(1) \land \left(p(n) \Rightarrow p(n+1)\right) \Longrightarrow \forall n~p(n)\]

が言えることになります.これを数学的帰納法といいます.

ちなみに教科書では,「任意(\(\forall\))」を含む主張(述語論理)を頑なに扱わないため,この数学的帰納法を扱う際も

数学的帰納法を用いて,次の等式を証明せよ.\[1+2+3+\cdots+n=\frac{1}{2}n(n+1)\]

出典:高等学校 数学Ⅱ 数研出版

 

という,本来あるべき「\(\forall\)」「任意の」「すべての」という記述のない主張になっています.しかし,上で見たように,ここでは「任意の」「すべての」が主張の根幹であって,それを書かなければ何をさせたいのか,何をすべきなのかそのアウトラインが全然見えてこないと思うのです.だから,ここは

数学的帰納法を用いて,任意の自然数\(n\)に対して次の等式が成り立つことを証明せよ.\[1+2+3+\cdots+n=\frac{1}{2}n(n+1)\]

と出題すべきだと僕は思う.これを意図しつつも書いていないということは「空気読めよ」ってことなんでしょうか(これとかもそう…!).でも初めて学ぶ高校生ががそんなことわかりますかね….任意だのなんだの考えずにとりあえず「型」通りにやれってことかな?まあ,たしかにそっちの方が「あたりさわりなく」できるタイプは量産できるかもしれませんが.教科書のこういうところに個人的に?と思ってしまいます.

使おう,位置ベクトル

位置ベクトルとは,「始点が原点であるようなベクトル」のことです.

平面上の任意の点\(\mathrm{A}\)に対して,ベクトル\(\overrightarrow{\mathrm{OA}}=\boldsymbol{a}\)をその位置ベクトルという.ただし\(\mathrm{O}\)は座標の原点である.

松坂和夫「線形代数入門」岩波書店

 

なぜ「始点が原点である」だけで「位置ベクトル」なんて名前をつけてまで差別化するのでしょうか.それは,始点が原点にあるがゆえに,ベクトルの成分とベクトルの先っぽ(終点)が指し示す点の座標が一致するからです.例えば,点\(\mathrm{P}\)の座標が\((2,1)\)であるならば,位置ベクトル\(\overrightarrow{\mathrm{OP}}\)の成分は\(\left(\begin{array}{c} 2 \\ 1 \\ \end{array} \right)\)だし,逆に位置ベクトル\(\overrightarrow{\mathrm{OP}}\)の成分が\(\left(\begin{array}{c} 2 \\ 1 \\ \end{array} \right)\)ならば点\(\mathrm{P}\)の座標は\((2,1)\)です.単純なことですが,位置ベクトルにおいてはこの性質-座標とベクトルが同一視できること-が極めて重要です.

※注意1 ベクトルの成分を縦に書いたものを「列ベクトル(または縦ベクトル)」と呼びます.他方,ベクトルの成分を横に書いたものを(高校教科書での記法)「行ベクトル(横ベクトル)」とよびます.どちらも同じものですがベクトルの成分を書くときは高校段階であっても行ベクトルではなく列ベクトルで表記した方がいいでしょう.どうせ大学へ行けば列ベクトル表記の方がむしろ当たり前になりますし,高校段階であってもそれが「成分」なのか「座標」なのかを意識するためにベクトル(の成分)は横,座標は縦,と区別して書くべきです.また列ベクトルだと成分計算がし易いという利点もあります.テスト・模試等でも列ベクトルを用いても大丈夫です.減点されることは絶対にありえませんから.

※注意2 問題によっては「点\(A\)に関する位置ベクトルを…」といい,始点を\(A\)などととることがあります.その場合には,「点\(A\)を自前で設定した座標系の原点」と考えればいいだけです.

位置ベクトルをこのように「始点を原点にとったときのベクトル;矢印の終点が指し示す座標」と見なせば,次のような問題も容易に発想できます.

半径の円\(a\)の円が\(x\)軸上を滑ることなく回転するとき,円上の定点\(\mathrm{P}\)の描くサイクロイドの媒介変数表示を求めよ.ただし,点\(\mathrm{P}\)の最初の位置を原点\(\mathrm{O}\),円の中心の最初の位置を\((0,a)\)とする.

どのような状況なのかイメージするは,言葉で説明するより図を見た方が早いでしょう.

この赤線上の点\(\mathrm{P}\)の座標を求めることを考えます.欲しいものは点\(\mathrm{P}\)の座標なわけですが,『点\(\mathrm{P}\)の座標=\(\overrightarrow{\mathrm{OP}}\)の成分』でしたから,位置ベクトル\(\overrightarrow{\mathrm{OP}}\)を求めることにします.


ベクトルなのだから,ベクトルの和の定義により,下図のように\[\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OH}}+\overrightarrow{\mathrm{HC}}+\overrightarrow{\mathrm{CP}}\]と分解できます.

したがって\(\overrightarrow{\mathrm{OH}},~\overrightarrow{\mathrm{HC}},~\overrightarrow{\mathrm{CP}}\)をそれぞれ求めればよい.

まず\(\overrightarrow{\mathrm{OH}}\)から.

このベクトルは始点が既に原点にありますから,位置ベクトル,すなわちその成分と終点が指し示す座標が一致しているはずです.したがって\(\overrightarrow{\mathrm{OH}}\)の終点が指し示す座標を調べればよい.\(\mathrm{OH}=\text{孤}\mathrm{PH}\)であることに注意すると(「滑らずに」転がしたんだから!右図参照),\(\mathrm{OH}=a\theta\).したがって点\(\mathrm{H}\)の座標は\((a\theta,0)\)で,(座標と成分が対応するから)\(\overrightarrow{\mathrm{OH}}\)の成分は\(\left(\begin{array}{c} a\theta \\ 0 \\ \end{array} \right)\)となります.

次に\(\overrightarrow{\mathrm{HC}}\).

始点が原点にあれば,そのまま終点が指し示す座標を読めばいいのですが,これは始点は原点ではありませんね.しかしベクトルは向きと大きささえ変えさえしなければ自由に動かせるのでしたから,始点を原点にとってから,その終点の座標を読めばよいでしょう.始点を原点にとったときのベクトルの終点が指し示す座標は\((0,~a)\)ですから,そのベクトルの成分は\(\overrightarrow{\mathrm{OH}}\)の成分は\(\left(\begin{array}{c} 0 \\ a \\ \end{array} \right)\)となります.

最後に\(\overrightarrow{\mathrm{CP}}\).

やはり始点を原点にとってから,その終点の座標を読みましょう.始点を原点にとったときのベクトルの終点が指し示す座標は
\begin{align*}
&(a\cos\left(-\left(\frac{\pi}{2}+\theta\right)\right),~a\sin\left(-\left(\frac{\pi}{2}+\theta\right)\right))\\
=&(a\cos\left(\frac{\pi}{2}+\theta\right),~-a\sin\left(\frac{\pi}{2}+\theta\right))\\
=&(-a\sin \theta,~-a \cos \theta)
\end{align*}
ですから,求めるベクトルの成分は\(\left(\begin{array}{c} -a\sin \theta \\ -a \cos \theta \\ \end{array} \right)\)となります.

以上により,
\begin{align*}
\overrightarrow{\mathrm{OP}}&=\overrightarrow{\mathrm{OH}}+\overrightarrow{\mathrm{HC}}+\overrightarrow{\mathrm{CP}}\\
&=\left(\begin{array}{c} a\theta \\ 0 \\ \end{array} \right)+\left(\begin{array}{c} 0 \\ a \\ \end{array} \right)+\left(\begin{array}{c} -a\sin \theta \\ -a \cos \theta \\ \end{array} \right)\\
&=\left(\begin{array}{c} a(\theta-\sin \theta) \\ a(1 – \cos \theta) \\ \end{array} \right)\\
\end{align*}

(くどいようですが)位置ベクトルの成分とその終点が指し示す座標は対応しているのですから,結局,
\[
\begin{eqnarray}
\begin{cases}
x = a(\theta-\sin \theta) & \\
y = a(1 – \cos \theta) &
\end{cases}
\end{eqnarray}
\]

が得られたことになります.

位置ベクトルについて強調すべきはその定義「始点が原点であるようなベクトル」であり,ゆえに,「ベクトルを座標と見なせる」点だと思うのですが,教科書はそこが強調されていない.僕はかつて予備校でこれを習いましたが,ベクトルが初めて「道具として役に立つ」と感じられたこと,そしてベクトルを座標とみなすという別の概念を同一視するという感覚が新鮮で嬉しかった記憶があります.実際,位置ベクトルを用いるとカージオイドやエピサイクロイドなどの他の曲線もまったく同様に媒介変数表示できますし,また数学Ⅲで学ぶ複素数平面においても有用です(例によって教科書では位置ベクトルを用いた説明などしてはくれません).教科書を機械的・天下り的になぞるのもひとつの学習法ではありますが,こういったことを学ぶのもまた大事です.

ついでながら.教科書は「誤り・誤植がほとんどない」という意味においては最も信頼できる本のひとつだと思います.が,しかし,「誤りがないこと=最善」であるとは限りません.教科書と違う考え方・解法というものに抵抗を感じる人も少なくないと思いますが,食わず嫌いせずに興味をもって身に付けてみましょう.きっともう一皮むけますから.

もっと積極的に使おうぜ,位置ベクトル.

シグマ計算の工夫

教科書には次の式が公式として載っています.\[\sum^n_{k=1}ar^{n-1}=\frac{a(1-r^n)}{1-r}\]これは「公式」なのだから覚えるべきなのでしょうか?

結論から言えば,これは覚えるべき式ではありません.次のように考えましょう:

\[\sum\text{の後ろが\(r^{n}\)の形をしている}\]
ことからこれは等比数列の和であることが見て取れます.ここが最大のポイント.
等比数列の和の公式を思い出しましょう.等比数列の和の公式で必要な情報は,初項,公比,項数,の3つの情報でした.それらさえ分かればいい.\(\sum^n_{k=1}ar^{n-1}\)から読み取ってみましょう.

初項は?\(ar^{n-1}\)に\(n=1\)を代入すればよいでしょう.\(ar^{1-1}=ar^{0}=a\)です.

公比は?これは式の形からただちに\(r\)と分かります.

項数は?\(\sum^n_{k=1}\),すなわち項は\(1\)から\(n\)までありますから\(n\)個です.

したがって,等比数列の和の公式にこれらを代入し,\[\frac{a(1-r^n)}{1-r}\]が得られます.

練習に次の問題をやってみましょう.

\[(1)~\sum^{10}_{k=6}2\cdot 3^k\hspace{40mm}(2)~\sum^{2n-1}_{k=m}5^{2k-1}\]

\((1)\)

初項は?\(2\cdot 3^k\)に\(k=1\)と代入すればよいでしょう.\(2\cdot 3^1=6\)です.

公比は?式の形から,\(3\)です.

項数は?\(10-6+1=5\)です.

したがって,求める和は\[\frac{6(1-3^5)}{1-3}=\frac{6(3^5-1)}{2}=3^6-3=726\]となります.

\((2)\)

初項は?\(5^{2k-1}\)に\(k=m\)と代入すればよいでしょう.\(5^{2m-1}\)です.

公比は?\(5^{2k-1}=5^{2k}\cdot5^{-1}=\frac{1}{5}25^k\)であることに注意して,\(25\)です.

項数は?\((2n-1)-m+1=2n-m\)です.

したがって,求める和は\[\frac{5^{2m-1}(1-25^{2n-m})}{1-25}=\frac{5^{2m-1}(25^{2n-m}-1)}{24}\]となります.

以上,解答の過程に着目して欲しいのですが「\(\sum ar^{n-1}\)の公式」など必要ありませんし,覚えていても上ような形に添わないため使い物にすらなりません.

一般に,教科書が「公式」だと言っているから必ず覚えてなくてはならない,という訳では決してありません.教科書で「覚えろ」と言わんばかりの記述であっても,それが本当に覚える価値のある式なのか,それとも導出過程さえ押さえればいい式なのか,自分の頭で考え,疑う癖をつけることは数学を学ぶ上では非常に大事です.

法線ベクトル

\[
\begin{align*}
&ax+by+c=0\\
\Longleftrightarrow~&a\left(x+\frac{c}{2a}\right)+b\left(y+\frac{c}{2b}\right)=0\\
\Longleftrightarrow~&\left(\begin{array}{c}a\\b\end{array}\right)\cdot\left(\begin{array}{c}x+\frac{c}{2a}\\y+\frac{c}{2b}\end{array}\right)=0\\
\Longleftrightarrow~&\left(\begin{array}{c}a\\b\end{array}\right)\cdot\left(\begin{array}{c}x-\left(-\frac{c}{2a}\right)\\y-\left(-\frac{c}{2b}\right)\end{array}\right)=0\\
\end{align*}
\]
最後の式の主張は「点\((x,~y)\)と点\(\left(-\frac{c}{2a},~-\frac{c}{2b}\right)\)を結んだベクトルが,ベクトル\((a,~b)\)と垂直になる」ということ(内積が0ですから).そのような条件をみたす点\((x,~y)\)の集まりは当然,直線となるわけですが,同値変形の元の式を見ると,その直線は\(ax+by+c=0\)という直線です.したがって直線\(ax+by+c=0\)に垂直なベクトル(の1つ)が\((a,~b)\),であると言えます.

「\(ax+by\)という1次結合の形が現れたら,内積とみる」という視点は受験数学においても大切な視点です.

点と直線の距離の公式の証明

点と直線の距離の公式を証明してみましょう.

直線\(l:ax+by+c=0\)と,この直線上にない点を\(\mathrm{P}(x_0,~y_0)\),そして下図に示す直線\(l\)上の点を\(\mathrm{A}(p,~q)\)とします.

まず\(l\)の法線ベクトルを求め,図示します.法線ベクトルは\(x\)と\(y\)との係数から\((a,~b)\)でしたね(なぜ?).また,\(\overrightarrow{\mathrm{AP}}\)を図示しておきます.(下図では\((a,~b)\)を列ベクトルで表記しています.)

求めたいものも図示しておきましょう.それは,

上図の赤い線分\(\mathrm{AH}(=|\overrightarrow{\mathrm{AH}}|)\)ですね.

気づいたでしょうか?これはほかならぬ正射影ベクトル(の大きさ)です.ですから結局,「点と直線の距離は,正射影ベクトルを求めて,その大きさを求めればよい」と分かります.

ここで正射影ベクトルの公式の出番です!

正射影ベクトルを求めるために,ベクトル\((a,~b)\)を正規化(大きさを1にすること)しておきましょう:
\[\frac{1}{\sqrt{a^2+b^2}}
\left(\begin{array}{c}
a \\
b \\
\end{array}\right)
\]
このベクトルを\(\overrightarrow{n}\)とおきます.すると,正射影ベクトルの公式から,\(\overrightarrow{\mathrm{AH}}\)は\[(\overrightarrow{\mathrm{AP}}\cdot\overrightarrow{n})\overrightarrow{n}\]と書けますね.\[\overrightarrow{\mathrm{AP}}=\left(\begin{array}{c} x_0\\ y_0\end{array}\right)-\left(\begin{array}{c} p\\ q\end{array}\right)=\left(\begin{array}{c} x_0-p\\ y_0-q\end{array}\right)
\]
ですから,計算すると
\[
\begin{align*}
&\overrightarrow{\mathrm{AH}}=(\overrightarrow{\mathrm{AP}}\cdot\overrightarrow{n})\overrightarrow{n}\\
=&\left\{\left(\begin{array}{c} x_0-p\\ y_0-q\end{array}\right)\cdot\frac{1}{\sqrt{a^2+b^2}}
\left(\begin{array}{c}
a \\
b \\
\end{array}\right)\right\}\overrightarrow{n}\\
=&\frac{a(x_0-p)+b(y_0-q)}{\sqrt{a^2+b^2}}\overrightarrow{n}
\end{align*}
\]
\(\mathrm{AH}=|\overrightarrow{\mathrm{AH}}|\)ですから,\(\left| \overrightarrow{n}\right|=1\)であることに注意して,
\[
\begin{align*}
\mathrm{AH}=&|\overrightarrow{\mathrm{AH}}|\\
=&\left|\frac{a(x_0-p)+b(y_0-q)}{\sqrt{a^2+b^2}}\overrightarrow{n}\right|\\
=&\frac{|ax_0+by_0-ap-bq|}{\sqrt{a^2+b^2}}|\overrightarrow{n}|\\
=&\frac{|ax_0+by_0-ap-bq|}{\sqrt{a^2+b^2}}
\end{align*}
\]
ここで,\((p,~q)\)は直線\(l\)上の点でしたから,\[ap+bq+c=0\quad \text{すなわち}\quad c=-ap-bq\]が成り立ちます.したがって,上の式は結局
\[\mathrm{AH}=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}\]となります.

この証明のいいところは,まず簡潔で記述量(計算量)が少ない(=かっこいい)という点,それにこの公式の三次元バージョンとでもいいますか「点の平面の距離の公式」を導出する際もまったく同じように応用できるという点です.他にも,数学検定1級1次の問題でこのアイデアが使える問題がありました.いずれ紹介したいと思います.

また,この証明を通して「正射影ベクトルの公式」の使いどころも感じて貰えたかと思います.

今回はとりあえずここまでにして,「点と平面の距離の公式」も後ほど記事にしてみたいと思います.

シグマ計算の工夫

問題
\(\displaystyle \sum^n_{k=1}(ak+b)\)を計算せよ.ただし\(a,b\)は定数.

これを計算せよと言われたら次のように計算すると思います.
\[
\begin{align*}
\displaystyle \sum^n_{k=1}(ak+b)&=a\sum^n_{k=1}k+\sum^n_{k=1}b&\Sigma\text{の分配法則}\\
&=a\frac{1}{2}n(n+1)+bn&\Sigma\text{の公式}\\
&=\frac{a}{2}n^2+\frac{a}{2}n+bn&\text{計算して}\\
&=\frac{a}{2}n^2+(\frac{a}{2}+b)n&\text{整理}
\end{align*}
\]

しかし,これは次のように計算するのが実戦的です.

\[
\begin{align*}
\displaystyle \sum^n_{k=1}(ak+b)&=\frac{n\left\{(a+b)+(an+b)\right\}}{2}\\
&=\frac{n(an+a+2b)}{2}
\end{align*}
\]

このように一行で済みます.これはどう考えたのかというと・・・

まず,\(\Sigma\)の後ろが\(k\)についての1次式\(ak+b\)であることから,聞かれているものが「等差数列の和」であることが見て取れます(ここを見抜くのがポイント).ですからあとは等差数列の和の公式を使えばいいだけです.等差数列の和の公式で必要な要素は項数,初項,末項でしたが,これらは暗算ですぐに調べられます:

項数は?今,\(\sum^n_{k=1}\),つまり\(1\)番から\(n\)番までの和,ですから項数は\(n\)個です.

初項は?\(ak+b\)の\(k\)に\(k=1\)と代入すればいいでしょう.\(a\cdot 1+b=a+b\).

末項は?\(ak+b\)の\(k\)に\(k=n\)と代入すればいいでしょう.\(a\cdot n+b=an+b\).

このように,項数\(n\),初項\(a+b\),末項\(an+b\)とすぐに分かりますから,あとはこれらを等差数列の和の公式に当てはめ,\[\frac{n\left\{(a+b)+(an+b)\right\}}{2}=\frac{n(an+a+2b)}{2}\]と即答できるわけです.

練習問題
\(\displaystyle \sum^{3n-1}_{k=7}(3k+2)\)を計算せよ.

これも,

\[
\begin{align*}
\displaystyle \sum^{3n-1}_{k=7}(3k+2)=&3\sum^{3n-1}_{k=7}k+\sum^{3n-1}_{k=7}2\\
=&3\left(\sum^{3n-1}_{k=1}k-\sum^{6}_{k=1}k\right)+\left(\sum^{3n-1}_{k=1}2-\sum^{6}_{k=1}2\right)\\
=&\cdots
\end{align*}
\]

として計算するのは悪手です.

上のように,\(\Sigma\)の後ろが\(k\)についての1次式であることから,等差数列の和であることを見抜き,項数,初項,末項を調べます.

項数は?今,\(\sum^{3n-1}_{k=7}\),つまり\(7\)番から\(3n-1\)番までの和,ですから項数は\((3n-1)-7+1=3n-7\)個です(\(+1\)に注意!).

初項は?\(3k+2\)の\(k\)に\(k=7\)と代入すればいいでしょう.\(3\cdot 7+2=23\).

末項は?\(3k+2\)の\(k\)に\(k=3n-1\)と代入すればいいでしょう.\(3\cdot (3n-1)+2=9n-1\).

よって,等差数列の和の公式より,
\[
\begin{align*}
\displaystyle \sum^{3n-1}_{k=7}(3k+2)&=\frac{(3n-7)\left\{23+(9n-1)\right\}}{2}\\
&=\frac{(3n-7)(9n+22)}{2}
\end{align*}
\]

と即答できます.

 

部分分数分解

数学Bで学びますが,この話題が教科書の例題や練習題に登場する際は,部分分数分解済の式が問題文中で天下りに与えれるのみで,肝心の「どう部分分数分解」するのかには全く触れていません.しかし,実戦では部分分数分解済の式が与えられることなどまずなく,自分で部分分数分解しなければなりません.そこで,ここでは「部分分数分解の仕方」について書いていきたいと思います.

・・・ところで,そもそもなぜ部分分数分解をするのでしょうか?というか,なぜ部分分数分解をしようと思うのでしょうか?方法論の前に,まずこの点にから見ていこうと思います.

少し話が飛びますが,\(\Sigma k^2\)や\(\Sigma k^3\)の公式を導出する際にどんなアイデアを使ったかを思い出しましょう.前者は\((k+1)^3-k^3=3k^2+2k+1\)という恒等式を,後者は\((k+1)^4-k^4=4k^3+6k^2+4k+1\)という恒等式を考え,\(k\)を\(1\)から\(n\)まで変えて辺々足し加えた,つまり

\[
\begin{align*}
&\sum^n_{k=1}\{ (k+1)^3-k^3\}=\sum^n_{k=1}(3k^2+2k+1)\\
&\sum^n_{k=1}\{ (k+1)^4-k^4\}=\sum^n_{k=1}(4k^3+6k^2+4k+1)
\end{align*}
\]

を計算することで例の公式\(\Sigma k^2=\frac{1}{6}n(n+1)(2n+1)\)や\(\Sigma k^3=\left\{\frac{1}{2}n(n+1)\right\}^2\)が得られたのでした.

なぜうまく計算ができて,このような公式をつくることができたのしょうか?

左辺の\(\Sigma\)のうしろ\((k+1)^3-k^3\)を見てみましょう.\(f(k)=k^3\)とおくと,\(f(k+1)=(k+1)^3\)となりますから\((k+1)^3-k^3\)は\(f(k+1)-f(k)\)と表せます.

\((k+1)^4-k^4\)についても同様に\(f(k)=k^4\)とおくと,\(f(k+1)=(k+1)^4\)となりますからやはり\((k+1)^4-k^4\)も\(f(k+1)-f(k)\)と表せます.

どうやら,「\(\Sigma\)の後ろを\(f(k+1)-f(k)\)という形にする」というところに秘密がありそうです.実際,\(\sum (f(k+1)-f(k))\)を計算してみると

\[
\begin{align*}
&\sum^n_{k=1}(f(k+1)-f(k))\\
=&(f(2)-f(1))+(f(3)-f(2))+(f(4)-f(3))+\cdots+(f(n+1)-f(n))\\
=&f(n+1)-f(1)
\end{align*}
\]

となって途中項同士が打ち消しあい,いわば「中抜け」現象がおきて生き残りが\(f(n+1)\)と\(f(1)\)だけになってくれるという,とても嬉しいことが起きます.

このように,\(\Sigma k^2\)や\(\Sigma k^3\)の公式を教科書で導出する際は\((k+1)^3-k^3=3k^2+2k+1\)や\((k+1)^4-k^4=4k^3+6k^2+4k+1\)という恒等式が天下りに与えらえていましたが,どちらも実は「\(f(k+1)-f(k)\)という形を作りたい」という積極的な動機のもとに用意する式だった,と言えます.

\(\Sigma\)計算はその背景に「\(f(k+1)-f(k)\)という形を作りたい」という気持ちがある,ということが分かりました.この点を踏まえた上で,改めて部分分数分解を眺めてみましょう.

例えば\(\sum^n_{k=1}\frac{1}{k(k+2)}\).これもやはり\(f(k+1)-f(k)\)という形を作りたいわけですから,「\(\frac{1}{k}-\frac{1}{k+2}\)と部分分数分解できたら嬉しいなあ・・・」と予想(というか願望?)します.なぜなら\(f(k)=\frac{1}{k}\)とおけば\(\frac{1}{k+2}\)は\(f(k+2)\)と表せることになり,\(f(k)-f(k+2)\)が現れるからです(\(f(k+1)-f(k)\)でなく\(f(k)-f(k+2)\)でいいの?と思った人.大丈夫,これらに本質的な違いはありません,どちらも「中抜け現象」がおきますから).

しかしあくまでこれは「予想」なので,確かめてみる必要があるわけです.予想した\(\frac{1}{k}-\frac{1}{k+2}\)を計算して\(\frac{1}{k(k+2)}\)になるか確かめてみましょう.

\[\frac{1}{k}-\frac{1}{k+2}=\frac{(k+2)-k}{k(k+2)}=\frac{2}{k(k+2)}\]

失敗しました.欲しいのは\(\frac{1}{k(k+2)}\)であって,\(\frac{2}{k(k+2)}\)ではありません.しかし,これは実りある失敗です.なぜなら,今得た式

\[\frac{1}{k}-\frac{1}{k+2}=\frac{2}{k(k+2)}\]

は,ちょっと細工すれば,すなわち両辺を2で割ってやれば

\[
\begin{align*}
&\frac{1}{k}-\frac{1}{k+2}\times\frac{1}{2}=\frac{2}{k(k+2)}\times\frac{1}{2}\\
&\frac{1}{k(k+2)}=\frac{1}{2}\left(\frac{1}{k}-\frac{1}{k+2}\right)
\end{align*}
\]

が得られます.\(\frac{1}{2}\)がついているものの,ちゃんと\(f(k)-f(k+2)\)という形になっています.これならうまくいきそうです.

このように,部分分数分解は,「\(f(k+1)-f(k)\)のような形を作りたい」という動機がまず最初にあり,その気持ちから然るべき予想をし,「予想を計算,その結果をあとで微調整」と考えるのが肝というわけです.

練習問題
\(S_n=\sum^{n}_{k=1}a_k\)とする.このとき,
\[\sum^n_{k=1}\frac{a_{k+1}+a_{k+2}}{S_kS_{k+1}S_{k+2}}\]を\(S_1,~S_2,~S_{n+1},~S_{n+2}\)で表せ.

\(\sum\)のうしろを\(f(k+1)-f(k)\)や\(f(k+2)-f(k)\)のような形にしたいという気持ちから,\(\frac{a_{k+1}+a_{k+2}}{S_kS_{k+1}S_{k+2}}=\frac{1}{S_{k+2}S_{k+1}}-\frac{1}{S_{k+1}S_{k}}\)ではないか?と予想します(\(f(k)=\frac{1}{S_{k+1}S_{k}}\)とおくと\(f(k+1)=\frac{1}{S_{k+2}S_{k+1}}\)となって\(f(k+1)-f(k)\)という形が現れますから).

この予想が正しいか,計算して確認してみます.

\[
\begin{align*}
&\frac{1}{S_{k+2}S_{k+1}}-\frac{1}{S_{k+1}S_{k}}=\frac{S_{k}-S_{k+2}}{S_kS_{k+1}S_{k+2}}\\
=&\frac{(a_1+a_2+\cdots+a_k)-(a_1+a_2+\cdots+a_k+a_{k+1}+a_{k+2})}{S_kS_{k+1}S_{k+2}}\\
=&-\frac{a_{k+2}+a_{k+1}}{S_kS_{k+1}S_{k+2}}
\end{align*}
\]

すなわち

\[\frac{1}{S_{k+2}S_{k+1}}-\frac{1}{S_{k+1}S_{k}}=-\frac{a_{k+2}+a_{k+1}}{S_kS_{k+1}S_{k+2}}\]

を得ます.\(-\)(マイナス)が邪魔ですね.両辺に\(-1\)を掛けて微調整しましょう.

\[\frac{a_{k+2}+a_{k+1}}{S_kS_{k+1}S_{k+2}}=\frac{1}{S_{k+1}S_{k}}-\frac{1}{S_{k+2}S_{k+1}}\]

よって,

\[\sum^{n}_{k=1}\frac{a_{k+2}+a_{k+1}}{S_kS_{k+1}S_{k+2}}=\sum^{n}_{k=1}\left(\frac{1}{S_{k+1}S_{k}}-\frac{1}{S_{k+2}S_{k+1}}\right)\]

「\(f(k)-f(k+1)\)」という形が作れたので,これでうまく「中抜け現象」を作り出せそうですね(以下解答は割愛).

基本ベクトルの外積

同じ基本ベクトル同士の外積は,\(\overrightarrow{0}\)になります.なぜなら,同じベクトルですからその2つのベクトルが作る平行四辺形の面積は0であるから,外積の大きさも0(外積の定義ⅲを参照),したがって\(\overrightarrow{0}\)です.

異なる基本ベクトル同士の外積ならどうでしょうか.たとえば,\(\overrightarrow{e_1}\times\overrightarrow{e_2}\)を考えてみます.

\(\overrightarrow{e_1}\times\overrightarrow{e_2}\)とは,外積の定義ⅰとⅱにより,図1に示す赤いベクトルであるといえます.さらに,\(\overrightarrow{e_1}\)と\(\overrightarrow{e_2}\)が作る平行四辺形は,正方形ですから,その面積は\(1\times1=1\)です.したがって,先ほどの赤いベクトル\(\overrightarrow{e_1}\times\overrightarrow{e_2}\)の大きさは\(1\)である,と言えます(図2参照).

以上により,\(\overrightarrow{e_1}\times\overrightarrow{e_2}\)は上の図の赤いベクトルで,しかもその大きさは\(1\)であることが分かります.このベクトルはほかならぬ\(\overrightarrow{e_3}\)ですね.同様に考え,\(\overrightarrow{e_1}\times\overrightarrow{e_3}\)や\(\overrightarrow{e_3}\times\overrightarrow{e_2}\)なども導出できます.

© 2024 佐々木数学塾, All rights reserved.