部分積分の公式

部分積分法\[\int f(x)g(x)dx=F(x)g(x)-\int F(x)g'(x) dx\]

(証明)

積の微分法より\[(F(x)g(x))’=f(x)g(x)+F(x)g'(x)\]
この式は「微分して\(f(x)g(x)+F(x)g'(x)\)になるような関数が,\(F(x)g(x)\)」ということですから,不定積分が原始関数を表すことを思い出すと\[F(x)g(x)=\int \big( f(x)g(x)+F(x)g'(x) \big)dx\]と書けます.不定積分の線形性より,
\[F(x)g(x)=\int f(x)g(x)dx+\int F(x)g'(x) dx\]
移項すると,\[\int f(x)g(x)dx=F(x)g(x)-\int F(x)g'(x) dx\](証明終)

教科書等だと部分積分の公式は\[\int f'(x)g(x)dx=f(x)g(x)-\int f(x)g'(x) dx\]などと書かれていることが多いので,「まず被積分関数(の一部)を\(f'(x)\)の形にしてから公式を適用する」と認識されがちですが,その使い方はちょっと面倒だと思います.そうではなく,上のように\[\int f(x)g(x)dx=F(x)g(x)-\int F(x)g'(x) dx\]と認識しておけば,結局「片方\(f(x)\)の原始関数(の1つ)を求めて,もう片方\(g(x)\)を微分する」と読め,やるべきことが明解です.もちろん,やっていることは同じなんですがこんな地味なレベルでの認識の違いで覚えやすさ,計算のスピードが変わってくるので意外と大事です.

覚え方:代ゼミの荻野暢也先生の言葉をお借りすれば…「片方積分して,放っておかれたほう微分して引く積分」です!(僕はこの荻野先生の覚え方で覚えました^^;.部分積分するときは未だにこれを頭の中で唱えながら部分積分しています.おすすめです)

© 2024 佐々木数学塾, All rights reserved.