三角不等式

次の不等式を証明せよ.
\[\displaystyle \sum_{i=1}^{n}|x_i+y_i|^p \leq \sum_{i=1}^{n}|x_i||x_i+y_i|^{p-1}+\sum_{i=1}^{n}|y_i||x_i+y_i|^{p-1}\]

高校数学の範囲的には数学Ⅰ(絶対値),数学Ⅱ(不等式の証明,三角不等式),数学B(シグマ計算)あたりかな?

証明
\begin{align*}
|x_i+y_i|^p = &|x_i+y_i||x_i+y_i|^{p-1} \\
\leq &(|x_i|+|y_i|)|x_i+y_i|^{p-1}\\
= &|x_i||x_i+y_i|^{p-1}+|y_i||x_i+y_i|^{p-1}
\end{align*}

この不等式の\(i\)を\(i=1 \cdots n\)とかえて辺々加えて\[\displaystyle \sum_{i=1}^{n}|x_i+y_i|^p \leq \sum_{i=1}^{n}|x_i||x_i+y_i|^{p-1}+\sum_{i=1}^{n}|y_i||x_i+y_i|^{p-1}\]を得る.

証明終

Minkowskiの不等式の証明で使うのでここにnoteしておきます。

高校数学の証明問題としても使えると思いますが三角不等式って高校数学ではそれほど使用頻度が高くないので意外と詰まっちゃう高校生も多い気がします。

© 2024 佐々木数学塾, All rights reserved.