★P106

…その場合,\((W_{\lambda},\leq _{\lambda}),(W_{\lambda^{\prime}},\leq _{\lambda^{\prime}})\)のいずれか一方は他方の切片,したがって部分順序集合であるから…

 

松坂先生の集合・位相入門,理解できない箇所はところどころあるけどここもその一つ。周回後のレベルアップした(であろう)自分に期待するんだけど読むたびにやっぱりなんか釈然としない。多分しょーもないことなんだろうけど…。色々考えた末,以下の理解に落ち着いた:

理解

たとえば\((W_{\lambda},\leq _{\lambda})\)が\((W_{\lambda^{\prime}},\leq _{\lambda^{\prime}})\)の切片であるとする.切片\[(W_{\lambda^{\prime}},\leq _{\lambda^{\prime}})\langle a \rangle(= \{x|x \in W_{\lambda^{\prime}},x \leq_{\lambda^{\prime}} a\})\]これ自体は(あくまで\(W^{\prime}\)の元から順序\(\leq_{\lambda^{\prime}}\)で\(a\)よりも小さい元を集めたものに過ぎないから)ただの\(W_{\lambda^{\prime}}\)の部分集合であり,順序は定義されていない.しかし,一般に,順序集合\(A\)の空でない任意の部分集合\(M\)は,順序が与えれれていなくても,「\(A\)における順序を\(M\)上に制限した」と考えることで\(A\)と同じ順序が与えれられる(※).したがって,部分集合\((W_{\lambda^{\prime}},\leq _{\lambda^{\prime}})\langle a \rangle\)は順序集合\[((W_{\lambda^{\prime}},\leq _{\lambda^{\prime}})\langle a \rangle , \leq_{\lambda^{\prime}})\]となる.これが\((W_{\lambda},\leq _{\lambda})\)に等しいから\[\leq_{\lambda^{\prime}}=\leq _{\lambda}\]となる.

理解終

※は89,90ページの部分順序集合についての記述から判断したもののちょっと自信ない。
…まあ,さしあたりこの理解でいいや^^;

「存在することを示せ」と言われたら(その2)(★P105問題2 )

順序集合\(A\)の元の列\((a_n)_{n\in\mathbb{N}}\)で,\(a_1<a_2<\cdots<a_n<\cdots\)となるものを\(A\)における昇鎖という.これと相対的に\(A\)における降鎖が定義される.\(A\)が全順序集合であるとき,\(A\)が整列集合であるための必要十分条件は,\(A\)において降鎖が存在しないことであることを示せ.

存在を追え!

証明

(\(\Rightarrow\))
\(A\)が整列集合で,\(A\)において降鎖が存在すると仮定する.このとき,\(A\)の元の列\((a_n)_{n\in\mathbb{N}}\)で,\[a_1>a_2>\cdots>a_n>\cdots\]となるものが存在するが,\(\{a_n\}_{n\in\mathbb{N}}\)には最小元が存在せず,矛盾である.

(\(\Leftarrow\))
\(A\)が整列集合でないならば\(A\)において降鎖が存在することを示す(対偶).
仮定により,\(A\)は整列集合でないから

\begin{align*}
\neg (A\text{が整列集合})\Longleftrightarrow~&\neg (\text{空でない任意の部分集合が最小元をもつ})\\
\Longleftrightarrow~&\neg (M\neq \phi,M \subset A \Rightarrow M\text{は最小元をもつ})\\
\Longleftrightarrow~&\exists M[M\neq \phi,M \subset A, M\text{は最小元をもたない}\cdots (\ast)]
\end{align*}

\begin{align*}
\neg (M\text{が最小元をもつ})~\Longleftrightarrow~&\neg(\exists a\in M \forall x \in M [a\leq x])\\
\Longleftrightarrow~&\forall a\in M \exists x \in M [x < a]\cdots(\ast\ast)\\
\end{align*}

したがって\((\ast)\)を満たす\(M\)が存在する.この\(M\)の任意の元\(a\)に対して,\((\ast\ast)\)により,\( x <a\)となる\(x\in M\)が存在する.そこで,\(M\)の元を任意に\(1\)つとり(これを\(a_1\)とおく),それに応じて定まる(\(x <a_1\)を満たす)\(x\in M\)を\(a_2\)とおくと\[a_2 < a_1\]となる.さらにこの\(a_2\in M\)に対して,再び\((\ast\ast)\)により,上と同様に\(x < a_2\)となる\(x \in M\)が存在する.これを\(a_3\)とおけば,\[a_3 < a_2\]が成り立つ.これを繰り返して\(A\)の元の列\((a_n)_{n\in \mathbb{N}}\)を定めれば,これが示すべきものとなる.

証明終

\(\overline{a+b=c\text{日本語入力するとなんかはみ出すので,}}\)
なので上では\(\neg\)を使いました。

2次方程式の共通解問題(その2・つづき)

\[(P\Rightarrow Q \lor R) \land \overline{Q\Rightarrow P} \land (R \Rightarrow P)\Rightarrow~(P \Leftrightarrow R)\]

証明

\(P\Rightarrow Q \lor R,\overline{Q\Rightarrow P},R \Rightarrow P\)となる行,すなわち\(P\rightarrow Q \lor R,\overline{Q\rightarrow P},R \rightarrow P\)が真となる行(上から6行目)に着目すると,\((P\rightarrow Q \lor R) \land \overline{Q\rightarrow P} \land (R \rightarrow P)\)と\(P \leftrightarrow R\)の真理値(青〇)が一致している.したがって\[(P\Rightarrow Q \lor R) \land \overline{Q\Rightarrow P} \land (R \Rightarrow P)\Longrightarrow~(P \Leftrightarrow R)\]を得る.

証明終

(関連:2次方程式の共通解問題(その2)

2次方程式の共通解問題(その2)

\(2\)つの\(2\)次方程式\(x^2-3x+m-1=0,x^2+(m-2)x-2=0\)が共通な実数解をただ\(\)1つもつとき,定数\(m\)の値とその共通解を求めよ.

解答

\begin{align*}
&x^2-3x+m-1=0,x^2+(m-2)x-2=0\text{が共通な実数解をただ1つもつ}\\
\Longrightarrow~&x^2-3x+m-1=0,x^2+(m-2)x-2=0\text{が共通な実数解をもつ}\\
\Longleftrightarrow~&\exists x
\begin{cases}
x^2-3x+m-1=0\\
x^2+(m-2)x-2=0
\end{cases}\\
\Longleftrightarrow~&\exists x
\begin{cases}
x^2-3x+m-1=0\\
x^2+(m-2)x-2-(x^2-3x+m-1)=0
\end{cases}\\
\Longleftrightarrow~&\exists x
\begin{cases}
x^2-3x+m-1=0\\
(m+1)(x-1)=0\end{cases}\\
\Longleftrightarrow~&\exists x
\begin{cases}
x^2-3x+m-1=0\\
m=-1\lor x=1
\end{cases}\\
\Longleftrightarrow~&\exists x [x^2-3x+m-1=0 \land (m=-1 \lor x=1)]\\
\Longleftrightarrow~&\exists x [(x^2-3x+m-1=0 \land m=-1) \lor (x^2-3x+m-1=0 \land x=1)]\\
\Longleftrightarrow~&\exists x (x^2-3x-2=0 \land m=-1) \lor \exists x(1^2-3\cdot 1+m-1=0 \land x=1)]&\\
\Longleftrightarrow~&\exists x \left[x=\frac{3\pm \sqrt{17}}{2} \land m=-1\right] \lor \exists x[m=3 \land x=1]\\
\Longleftrightarrow~&\left(\exists x \left[x=\frac{3\pm \sqrt{17}}{2}\right] \land m=-1 \right) \lor (m=3 \land \exists x[x=1])\\
\Longleftrightarrow~&m=-1 \lor m=3
\end{align*}
(\(\exists x \left[x=\frac{3\pm \sqrt{17}}{2}\right],\exists x[x=1]\)は恒真命題)二行目が同値変形でないことに注意すると,結局,
\begin{align*}
x^2-3x+m-1=0,x^2+(m-2)x-2=0\text{が共通な実数解をただ1つもつ}&\\
\Longrightarrow~m=-1 \lor m=3&
\end{align*}
つまり得られた条件は必要条件に過ぎないので,十分性を調べる必要があります。そこで,逆に\(m=-1\)のときと\(m=3\)のときそれぞれの場合において「与えられた\(2\)次方程式が共通な実数解をただ1つもつ」ことを調べることにします。

\(m=-1\)のとき,与えられた\(2\)つの方程式は\(x^2-3x-2=0\)と\(x^2-3x-2=0\)となり,どちらの解も\(x=\frac{3\pm\sqrt{17}}{2}\)であり「ただ\(1\)つの」共通解を持つとは当然いえません。他方,\(m=3\)のときは\(x^2-3x+2=0\)と\(x^2+x-2=0\)となり,これらを解くとそれぞれの解は\(x=-2\)と\(x=-1\),そして\(x=-2\)と\(x=1\)となりこれなら「ただ\(1\)つの」共通解\(x=-2\)をもつと言えます。したがって答えは\[m=3\](で,共通解は\(x=-2\))となります。

解答終

結局これは,①必要条件を調べ,次に②その条件が十分条件となっているかどうかを調べる,という2つの段階に分けるというのが大まかなシナリオです(①は同値性を気にすることなくとりあえず右向きの矢印だけ気にすればいいから気楽)。このような方針は問題を解く際にしばしば見られるものです。実際,教科書の軌跡の解説などではお馴染みですね。僕は受験生時代,この問題の解説にはどことない気持ち悪さを感じつつもただただ解法パターンとして覚えることしかできず,細かいことは見て見ぬふりをしていました。今思えばその「気持ち悪さ」は結局論理を理解していなかったのが原因だと思います。とはいえ,学校で扱わないのだからこの手の話が分からんのはアタリマエ。ってかそもそも扱ってないことを問題にする時点でおかしくないか…?

先日,授業でこの\(2\)次方程式の共通解問題を扱い,例によって上のような解説を(もちろん論理式でなく日本語で)していてふと思いました。上の議論はつまり「\(P\Longrightarrow Q \lor R\)が言えました,そして\(Q\rightarrow P\)が偽(\(\overline{Q\rightarrow P}\)が真)で,\(R \rightarrow P\)が真であることが分かりました,だから\(P \Longleftrightarrow R\)と言えるよね」というもの,つまり\[(P\Rightarrow Q \lor R) \land \overline{Q\Rightarrow P} \land (R \Rightarrow P)\Longrightarrow~(P \Leftrightarrow R)\]ですが(※),そもそもこの命題は正しいのでしょうか…?僕自身この変形を普段から無意識に行っていましたが…よくよく考えれば疑問です。このことを調べてみます。(つづく

(関連:2次方程式の共通解問題(その1)

※(21/9/16) \(\Leftrightarrow\)を\(\Rightarrow\)に訂正しました。R君ご指摘ありがとうございます。

倍数の判定法

\(N\)を自然数とする.

\(N\)の下\(2\)桁が\(4\)の倍数\(~\Longleftrightarrow~\)\(N\)が\(4\)の倍数

証明

\(N\)を\(i\)桁目が\(a_{i-1}~(i=1,\cdots,n,a_{i-1}\in\mathbb{N})\)であるような自然数とする.
\begin{align*}
N&=a_0+a_1\times 10^{1}+a_2\times 10^{2}+\cdots+a_{n-1}\times 10^{n-1}\\
&=a_0+a_1\times 10^{1}+10^2(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})\\
&=a_0+a_1\times 10^{1}+4 \times 25(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})\tag{\(\ast\)}
\end{align*}

\(\Rightarrow\)について:
\(N\)の下\(2\)桁が\(4\)の倍数であるとする.\((\ast)\)により,
\[N=a_0+a_1\times 10^{1}+4 \times 25(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})\]仮定により,\(N\)の下\(2\)桁が\(4\)の倍数,すなわち\(a_0+a_1\times 10^{1}\)が\(4\)の倍数であるから\(N\)は\(4\)の倍数である.

\(\Leftarrow\)について:
\(N\)が\(4\)の倍数であるとする.\((\ast)\)により,
\begin{align*}
&N=a_0+a_1\times 10^{1}+4 \times 25(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})\\
\Longleftrightarrow~&a_0+a_1\times 10^{1} = N – 4 \times 25(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})
\end{align*}仮定により,\(N\)は\(4\)の倍数であるから\(a_0+a_1\times 10^{1}\)すなわち\(N\)の下\(2\)桁は\(4\)の倍数である.

証明終

教科書の記述だと「\(4\)の倍数…下\(2\)桁が\(4\)の倍数である」というような記述をしており,必要条件なのか十分条件なのか曖昧なのでここにまとめておきます。他の倍数の判定もまったく同様の方針で証明できます。ちなみに合同式を使うともっと簡潔に記述できます。

上限の定義

\(A\)を集合\(S\)の空でない部分集合とします。

上限の定義\(A\)が上に有界であるとき,もし\(A\)の上界のうちに最小元\(a\)があるならば,\(a\)を\(A\)の上限といい,\[\sup A=a\]と表す.

この定義を詳しく見ると,上限とは,

\((1)\) \(a\)は\(A\)の上界である
\((2)\) \(a\)は\(A\)の上界の最小元である

の2つで特徴付けられていることがわかります。これらを論理記号を用いて記述してみると
\begin{align*}
&\forall x\in A[x \leq a]\tag{1}\\
&\forall x\in A[x \leq a^{\prime}]\Longrightarrow a\leq a^{\prime}\tag{2}
\end{align*}そこで,\((2)\)を変形してみます。すると
\begin{align*}
&\forall x\in A[x \leq a^{\prime}]\Longrightarrow a\leq a^{\prime}\tag{2}\\
\Longleftrightarrow~&\overline{\forall x\in A[x \leq a^{\prime}]} \lor a\leq a^{\prime}\\
\Longleftrightarrow~&a\leq a^{\prime} \lor \overline{\forall x\in A[x \leq a^{\prime}]}\\
\Longleftrightarrow~&\overline{a > a^{\prime}} \lor \exists x\in A[x > a^{\prime}]\\
\Longleftrightarrow~& a > a^{\prime} \Longrightarrow \exists x\in A[x > a^{\prime}]\tag{2′}
\end{align*}つまり,\((2′)\)は「\(a\)より少しでも小さい\(a^{\prime}\)を持ってくると,その\(a^{\prime}\)よりも大きい\(A\)の元が存在してしまう」すなわち「\(a\)より少しでも小さい\(a^{\prime}\)を持ってくると,それはもはや上界ではない」ということになります。したがって上の\((1),(2)\)は

\((1)\) \(a\)は\(A\)の上界である
\((2′)\) \(a^{\prime}\)を\(a^{\prime} < a\)を満たす\(S\)の任意の元とすれば,\(a^{\prime}\)は\(A\)の上界ではない

と言い換えらえれることになります。

\(*\)\(*\)\(*\)

\((2)\)と書かれている本と\((2′)\)と書かれている本があって気になっていたので整理してみました。

「存在することを示せ」と言われたら 

(数学A,数学B)

「ツチノコの存在を証明しろ」と言われたら,どうすればいいか。
…それは簡単,ツチノコを捕まえて連れてくればOK!

ここで,数学Aの「整数の性質」で登場した「整数の割り算」について見てみます。

一般に,次のことが成り立つ。

整数\(a\)と正の整数\(b\)について\[a=qb+r,~0\leq r < b\]となる整数\(q,r\)はただ\(1\)通りに定まる。

『高等学校 数学A』数研出版

 
「定まる」とは要は「存在する」ということですが,いずれにせよ初めて学んだときは感覚的に当たり前すぎて疑問にすら思わなかったと思います。しかし,いざこれを証明しろと言われたらどうしたらいいでしょう…?

ずばり,実際にもってこよう!(以下では簡単のために\(a\geq 0\)とし,また一意性の部分はカットします)

\(a,b\)を\(a \geq 0,b>0\)を満たす整数とする.このとき,
\[a=qb+r,~0\leq r < b\tag{\(\ast\)}\]を満たす整数\(q,r\)が存在することを示せ.

証明

\(b(>0)\)を固定して,任意の\(a(\geq 0)\)について主張が成り立つことが示せればよい.

\(a < b\)であるとき:
\(q=0,r=a\)とすればよい.

\((0 <)b \leq a\)であるとき:
数学的帰納法で示す.\(a\)より小さい非負の整数で主張が成り立つとする.\(b>0\)より\(b \leq a \Leftrightarrow 0 \leq a-b (< a)\)であるから,\(a-b\)は\(a\)より小さい非負の整数である.したがって仮定により,\begin{align*}
&\exists q^{\prime},r^{\prime}\in \mathbb{Z}[a-b = q^{\prime}b+r^{\prime},0 \leq r^{\prime} \leq b]\\
\Longleftrightarrow~&\exists q^{\prime},r^{\prime}\in \mathbb{Z}[a = (q^{\prime}+1)b+r^{\prime},0 \leq r^{\prime} \leq b]
\end{align*}よって\((\ast)\)を満たす\(q,r\)として\(q=q^{\prime}+1,~r=r^{\prime}\)ととればよい.
これで,\(a\)より小さい非負の整数で主張が成り立てば,\(a\)でも主張が成り立つことが分かった.
\(a=0\)のときは,\(q=0,r=0\)とすればよい.

以上により任意の\(a(\geq 0)\)に対して\((\ast)\)を満たす\(q,r \in \mathbb{Z}\)が存在することが示せた.

証明終

現物もってくれば文句ないだろっていう。

こんなところで数学Bで学んだ(学ぶ)数学的帰納法が登場するのも面白いですね。しかも直前の番号のみを仮定する教科書の定番タイプではなく,直前以前の番号すべてを仮定するタイプの帰納法です。

パズルみたいな学校数学もまあまあ面白いけど,個人的にはこういう緻密な調査の方がすきだなあ。点数にならないけど。

 

加法定理の証明

ななんだって!加法定理忘れた?!サイタコスモスどーのこーの?あーやめやめ。作りましょう。教科書には詳しく書いてありますが,それをここで繰り返してもつまらないのでちょっと違う証明を考えてみます。

加法定理\[\sin(\alpha \pm\beta)=\sin\alpha \cos\beta \pm \cos\alpha \sin\beta\]\[\cos(\alpha \pm \beta)=\cos\alpha \cos\beta \mp \sin\alpha \sin\beta\]

証明

単位円周上に下図のような点\(\mathrm{P}\)があったとします.

ここに,基本ベクトル\(\overrightarrow{e_1}=\left(\begin{array}{c} 1 \\ 0 \\ \end{array} \right),\overrightarrow{e_2}=\left(\begin{array}{c} 0 \\ 1 \\ \end{array} \right)\)をそれぞれ原点を中心に\(\alpha\)だけ回転させたベクトル\(\overrightarrow{\mathrm{OA}},\overrightarrow{\mathrm{OB}}\)を考え,図示します.\(\mathrm{A}(\cos\alpha,~\sin\alpha),~\mathrm{B}(\cos\left(\frac{\pi}{2}+\alpha\right),~\sin\left(\frac{\pi}{2}+\alpha\right))\)ですから,それらの成分は\[\overrightarrow{\mathrm{OA}}=\left(\begin{array}{c} \cos\alpha \\ \sin\alpha \\ \end{array} \right),\quad\overrightarrow{\mathrm{OB}}=\left(\begin{array}{c} \cos\left(\frac{\pi}{2}+\alpha\right) \\ \sin\left(\frac{\pi}{2}+\alpha\right) \\ \end{array} \right)=\left(\begin{array}{c} -\sin\alpha \\ \cos\alpha \\ \end{array} \right)\]です.

この\(\overrightarrow{\mathrm{OA}}\),\(\overrightarrow{\mathrm{OB}}\)を基底とする新たな座標系の下でこの点\(\mathrm{P}\)を捉え直します.この新座標系における図の点\(\mathrm{P}\)の座標は,\((\cos\beta,~\sin\beta)\),すなわち\[
\begin{align*}
\overrightarrow{\mathrm{OP}}
&=\cos\beta\overrightarrow{\mathrm{OA}}+\sin\beta\overrightarrow{\mathrm{OB}}\\
&=\cos\beta\left(\begin{array}{c} \cos\alpha \\ \sin\alpha \\ \end{array} \right)+\sin\beta\left(\begin{array}{c} -\sin\alpha \\ \cos\alpha \\ \end{array} \right)\\
&=\left(\begin{array}{c} \cos\alpha\cos\beta-\sin\alpha\sin\beta \\ \sin\alpha\cos\beta+\cos\alpha\sin\beta \\ \end{array} \right)
\end{align*}\]です.

さらにこれは,
\begin{align*}
\overrightarrow{\mathrm{OP}}&=\left(\begin{array}{c} \cos\alpha\cos\beta-\sin\alpha\sin\beta \\ \sin\alpha\cos\beta+\cos\alpha\sin\beta \\ \end{array} \right)\\
&=(\cos\alpha\cos\beta-\sin\alpha\sin\beta)\left(\begin{array}{c} 1 \\ 0 \\ \end{array} \right)+(\sin\alpha\cos\beta+\cos\alpha\sin\beta)\left(\begin{array}{c} 0 \\ 1 \\ \end{array} \right)\\
&=(\cos\alpha\cos\beta-\sin\alpha\sin\beta)\overrightarrow{e_1}+(\sin\alpha\cos\beta+\cos\alpha\sin\beta)\overrightarrow{e_2}
\end{align*}
これは,点\(\mathrm{P}\)が,\(\overrightarrow{e_1},\overrightarrow{e_2}\)を基底とする(いつもの)座標系においてその座標が\[(\cos\alpha\cos\beta-\sin\alpha\sin\beta,\sin\alpha\cos\beta+\cos\alpha\sin\beta)\tag{1}\]であることを示しています.

他方,\(\overrightarrow{e_1},\overrightarrow{e_2}\)を基底とする座標系における点\(\mathrm{P}\)の座標は\begin{align*}\overrightarrow{\mathrm{OP}}=\left(\begin{array}{c} \cos(\alpha+\beta) \\ \sin(\alpha+\beta) \\ \end{array} \right)=&\cos(\alpha+\beta)\left(\begin{array}{c} 1 \\ 0 \\ \end{array} \right)+\sin(\alpha+\beta)\left(\begin{array}{c} 1 \\ 0 \\ \end{array} \right)\\ =& \cos(\alpha+\beta)\overrightarrow{e_1}+\sin(\alpha+\beta)\overrightarrow{e_2}\end{align*}より\[(\cos(\alpha+\beta),\sin(\alpha+\beta))\tag{2}\]であったから,\((1),(2)\)によって

\begin{eqnarray}
\begin{cases}
\cos(\alpha+\beta) = \cos\alpha\cos\beta-\sin\alpha\sin\beta & \\
\sin(\alpha+\beta) = \sin\alpha\cos\beta+\cos\alpha\sin\beta &
\end{cases}
\end{eqnarray}

が得られます.

証明終

説明しながらの記述なので面倒くさく見えるかもしれませんが,実際やってみると計算らしい計算なしにすぐに作れます。おすすめ。ちなみに\(\alpha-\beta\)の場合については上で得られた式の\(\beta\)を\(-\beta\)に変えれ直ちに手に入ります。(関連:斜交座標

サイタコスモスコスモスサイタって覚え方を初めて聞いたとき「コスモスサイタサイタコスモスでも通じるじゃん,覚え方として全く意味なくね…?」と思ったし今でもそう思う。

三角不等式

次の不等式を証明せよ.
\[\displaystyle \sum_{i=1}^{n}|x_i+y_i|^p \leq \sum_{i=1}^{n}|x_i||x_i+y_i|^{p-1}+\sum_{i=1}^{n}|y_i||x_i+y_i|^{p-1}\]

高校数学の範囲的には数学Ⅰ(絶対値),数学Ⅱ(不等式の証明,三角不等式),数学B(シグマ計算)あたりかな?

証明
\begin{align*}
|x_i+y_i|^p = &|x_i+y_i||x_i+y_i|^{p-1} \\
\leq &(|x_i|+|y_i|)|x_i+y_i|^{p-1}\\
= &|x_i||x_i+y_i|^{p-1}+|y_i||x_i+y_i|^{p-1}
\end{align*}

この不等式の\(i\)を\(i=1 \cdots n\)とかえて辺々加えて\[\displaystyle \sum_{i=1}^{n}|x_i+y_i|^p \leq \sum_{i=1}^{n}|x_i||x_i+y_i|^{p-1}+\sum_{i=1}^{n}|y_i||x_i+y_i|^{p-1}\]を得る.

証明終

Minkowskiの不等式の証明で使うのでここにnoteしておきます。

高校数学の証明問題としても使えると思いますが三角不等式って高校数学ではそれほど使用頻度が高くないので意外と詰まっちゃう高校生も多い気がします。

不等式の証明と微分法

(数学Ⅲ)

不等式の証明のアプローチのひとつとして微分法の利用があります。

\(p>1,q>1,\frac{1}{p}+\frac{1}{q}=1,a\geq 0,b\geq 0\)とする.このとき,\[ab \leq \frac{a^p}{p}+\frac{b^q}{q}\]を示せ.

証明

まず\(b\geq 0\)を固定して,\[ab \leq \frac{a^p}{p}+\frac{b^q}{q} \Longleftrightarrow~ \frac{1}{p}a^p-ba+\frac{b^q}{q}\geq 0\]と変形し,左辺を\(a\)の関数と見なす.この関数を\(f(a)\)とおく:\[f(a)=\frac{1}{p}a^p-ba+\frac{b^q}{q} \quad (a\geq 0)\]\(f^{\prime}(a)\)を調べると,\[f^{\prime}(a)=a^{p-1}-b\]\(a^{p-1}\)の概形が分からないので,もう一度微分することで\(f^{\prime}(a)\)がどんな概形かを調べる(※).すると\[f^{\prime\prime}(a)=(p-1)a^{p-2}\geq 0\]したがって\(f^{\prime}(a)\)は増加関数であることが分かる.\(a\geq 0\)であったことに注意して\(a=0\)のときの\(f^{\prime}(a)\)の値を調べると\[f^{\prime}(0)=-b\]

\(b=0\)のときは,\(f^{\prime}(0)=0\)であるから\(f^{\prime}(a)\geq 0\)となる.\(f(0)\)を調べると\(f(0)=\frac{b^q}{q}= 0\)であるから\(f(a)\geq 0\).(図1)

\(b>0\)のときすなわち\(-b<0\)のときは,\(f^{\prime}(a)=a^{p-1}-b=0 \Longleftrightarrow a=b^{\frac{1}{p-1}}\)で最小値をとる.

そこで\(f\left(b^{\frac{1}{p-1}}\right)\)を調べると
\begin{align*}
f\left(b^{\frac{1}{p-1}}\right)=&\frac{1}{p}\left(b^{\frac{1}{p-1}}\right)^p-b\cdot b^{\frac{1}{p-1}}+\frac{b^q}{q}\\
=&\frac{1}{p}b^{\frac{p}{p-1}}-b^{\frac{p}{p-1}}+\frac{b^q}{q}
\end{align*}
ここで,\(\frac{1}{p}+\frac{1}{q}=1\Leftrightarrow q=\frac{p}{p-1}\)であるから,\[f\left(b^{\frac{1}{p-1}}\right)=\frac{1}{p}b^q-b^q+\frac{1}{q}b^q=\left(\frac{1}{p}+\frac{1}{q}-1\right)b^q=0\]したがって\(f(a)\geq 0\).(図2)

以上により\[ab \leq \frac{a^p}{p}+\frac{b^q}{q}\]が示された.

証明終

※は概形が図示できず,かつ「差」とみても把握できないタイプなのでもう一回微分して\(f^{\prime\prime}(a)\)を調べました。この記事の「増減表のかきかた」の②”にあたる状況です。