2次方程式の共通解問題(その2・つづき)

\[(P\Rightarrow Q \lor R) \land \overline{Q\Rightarrow P} \land (R \Rightarrow P)\Rightarrow~(P \Leftrightarrow R)\]

証明

\(P\Rightarrow Q \lor R,\overline{Q\Rightarrow P},R \Rightarrow P\)となる行,すなわち\(P\rightarrow Q \lor R,\overline{Q\rightarrow P},R \rightarrow P\)が真となる行(上から6行目)に着目すると,\((P\rightarrow Q \lor R) \land \overline{Q\rightarrow P} \land (R \rightarrow P)\)と\(P \leftrightarrow R\)の真理値(青〇)が一致している.したがって\[(P\Rightarrow Q \lor R) \land \overline{Q\Rightarrow P} \land (R \Rightarrow P)\Longrightarrow~(P \Leftrightarrow R)\]を得る.

証明終

(関連:2次方程式の共通解問題(その2)

2次方程式の共通解問題(その2)

\(2\)つの\(2\)次方程式\(x^2-3x+m-1=0,x^2+(m-2)x-2=0\)が共通な実数解をただ\(\)1つもつとき,定数\(m\)の値とその共通解を求めよ.

解答

\begin{align*}
&x^2-3x+m-1=0,x^2+(m-2)x-2=0\text{が共通な実数解をただ1つもつ}\\
\Longrightarrow~&x^2-3x+m-1=0,x^2+(m-2)x-2=0\text{が共通な実数解をもつ}\\
\Longleftrightarrow~&\exists x
\begin{cases}
x^2-3x+m-1=0\\
x^2+(m-2)x-2=0
\end{cases}\\
\Longleftrightarrow~&\exists x
\begin{cases}
x^2-3x+m-1=0\\
x^2+(m-2)x-2-(x^2-3x+m-1)=0
\end{cases}\\
\Longleftrightarrow~&\exists x
\begin{cases}
x^2-3x+m-1=0\\
(m+1)(x-1)=0\end{cases}\\
\Longleftrightarrow~&\exists x
\begin{cases}
x^2-3x+m-1=0\\
m=-1\lor x=1
\end{cases}\\
\Longleftrightarrow~&\exists x [x^2-3x+m-1=0 \land (m=-1 \lor x=1)]\\
\Longleftrightarrow~&\exists x [(x^2-3x+m-1=0 \land m=-1) \lor (x^2-3x+m-1=0 \land x=1)]\\
\Longleftrightarrow~&\exists x (x^2-3x-2=0 \land m=-1) \lor \exists x(1^2-3\cdot 1+m-1=0 \land x=1)]&\\
\Longleftrightarrow~&\exists x \left[x=\frac{3\pm \sqrt{17}}{2} \land m=-1\right] \lor \exists x[m=3 \land x=1]\\
\Longleftrightarrow~&\left(\exists x \left[x=\frac{3\pm \sqrt{17}}{2}\right] \land m=-1 \right) \lor (m=3 \land \exists x[x=1])\\
\Longleftrightarrow~&m=-1 \lor m=3
\end{align*}
(\(\exists x \left[x=\frac{3\pm \sqrt{17}}{2}\right],\exists x[x=1]\)は恒真命題)二行目が同値変形でないことに注意すると,結局,
\begin{align*}
x^2-3x+m-1=0,x^2+(m-2)x-2=0\text{が共通な実数解をただ1つもつ}&\\
\Longrightarrow~m=-1 \lor m=3&
\end{align*}
つまり得られた条件は必要条件に過ぎないので,十分性を調べる必要があります。そこで,逆に\(m=-1\)のときと\(m=3\)のときそれぞれの場合において「与えられた\(2\)次方程式が共通な実数解をただ1つもつ」ことを調べることにします。

\(m=-1\)のとき,与えられた\(2\)つの方程式は\(x^2-3x-2=0\)と\(x^2-3x-2=0\)となり,どちらの解も\(x=\frac{3\pm\sqrt{17}}{2}\)であり「ただ\(1\)つの」共通解を持つとは当然いえません。他方,\(m=3\)のときは\(x^2-3x+2=0\)と\(x^2+x-2=0\)となり,これらを解くとそれぞれの解は\(x=-2\)と\(x=-1\),そして\(x=-2\)と\(x=1\)となりこれなら「ただ\(1\)つの」共通解\(x=-2\)をもつと言えます。したがって答えは\[m=3\](で,共通解は\(x=-2\))となります。

解答終

結局これは,①必要条件を調べ,次に②その条件が十分条件となっているかどうかを調べる,という2つの段階に分けるというのが大まかなシナリオです(①は同値性を気にすることなくとりあえず右向きの矢印だけ気にすればいいから気楽)。このような方針は問題を解く際にしばしば見られるものです。実際,教科書の軌跡の解説などではお馴染みですね。僕は受験生時代,この問題の解説にはどことない気持ち悪さを感じつつもただただ解法パターンとして覚えることしかできず,細かいことは見て見ぬふりをしていました。今思えばその「気持ち悪さ」は結局論理を理解していなかったのが原因だと思います。とはいえ,学校で扱わないのだからこの手の話が分からんのはアタリマエ。ってかそもそも扱ってないことを問題にする時点でおかしくないか…?

先日,授業でこの\(2\)次方程式の共通解問題を扱い,例によって上のような解説を(もちろん論理式でなく日本語で)していてふと思いました。上の議論はつまり「\(P\Longrightarrow Q \lor R\)が言えました,そして\(Q\rightarrow P\)が偽(\(\overline{Q\rightarrow P}\)が真)で,\(R \rightarrow P\)が真であることが分かりました,だから\(P \Longleftrightarrow R\)と言えるよね」というもの,つまり\[(P\Rightarrow Q \lor R) \land \overline{Q\Rightarrow P} \land (R \Rightarrow P)\Longrightarrow~(P \Leftrightarrow R)\]ですが(※),そもそもこの命題は正しいのでしょうか…?僕自身この変形を普段から無意識に行っていましたが…よくよく考えれば疑問です。このことを調べてみます。(つづく

(関連:2次方程式の共通解問題(その1)

※(21/9/16) \(\Leftrightarrow\)を\(\Rightarrow\)に訂正しました。R君ご指摘ありがとうございます。

「すべての」と「ある(存在する)」

数Ⅰの問題です。

\(y=p(x-q)^2+q~(p \neq 0)\)上のすべての点が放物線\(y=x^2-1\)の下側にあるような実数\(q\)が存在するときの実数\(p\)の範囲を求めよ.

まず,「~するときの範囲を求めよ」(「~するための条件を求めよ」)というのは「~するための必要十分条件を求めよ」と問うていると思われます。したがって「\(y=p(x-q)^2+q\)上のすべての点が放物線\(y=x^2-1\)の下側にあるような実数\(q\)が存在する」を同値変形することを考えます。日本語のままでは考えづらいので,この主張を論理記号を用いて表わしてみます。すると\[\exists q \in \mathbb{R} \forall x \in \mathbb{R}[x^2-1>p(x-q)^2+q]\]となります。したがって,

解答

\begin{align*}
&\exists q \in \mathbb{R} \forall x \in \mathbb{R}[x^2-1>p(x-q)^2+q]\\
\Longleftrightarrow~&\exists q \in \mathbb{R} \forall x \in \mathbb{R}[(1-p)x^2+2pqx-pq^2-q-1>0]\\
\Longleftrightarrow~&\exists q \in \mathbb{R} \forall x \in \mathbb{R} \begin{cases}(1-p)x^2+2pqx-pq^2-q-1>0 \\ 1-p>0 \lor 1-p=0 \lor 1-p < 0 \end{cases}\\ \Longleftrightarrow~&\exists q \in \mathbb{R} \forall x \in \mathbb{R}[((1-p)x^2+2pqx-pq^2-q-1>0\land p<1)\\ &\lor ((1-p)x^2+2pqx-pq^2-q-1>0\land p=1) \\
&\lor ((1-p)x^2+2pqx-pq^2-q-1>0\land p>1) ]\tag{1}
\end{align*}
ここで,\[\forall x\in \mathbb{R}[(1-p)x^2+2pqx-pq^2-q-1>0\land p=1]\]と\[\forall x\in \mathbb{R}[(1-p)x^2+2pqx-pq^2-q-1>0\land p>1]\]は偽の命題であるから,\((1)\)は
\[(1)\Longleftrightarrow~\exists q \in \mathbb{R} \forall x \in \mathbb{R}[(1-p)x^2+2pqx-pq^2-q-1>0\land p<1]\]とできる().したがって,
\begin{align*}
(1)\Longleftrightarrow~&\exists q \in \mathbb{R} \forall x \in \mathbb{R}[(1-p)x^2+2pqx-pq^2-q-1>0\land p<1]\\ \Longleftrightarrow~&\exists q \in \mathbb{R} [\forall x \in \mathbb{R}[(1-p)x^2+2pqx-pq^2-q-1>0]\land p<1]\\ \Longleftrightarrow~&\exists q \in \mathbb{R} [p^2q^2-(1-p)(-pq^2-q-1)<0\land p<1]\\ \Longleftrightarrow~&\exists q \in \mathbb{R} [p^2q^2-(1-p)(-pq^2-q-1)<0]\land p<1\\ \Longleftrightarrow~&\begin{cases}\exists q \in \mathbb{R} [pq^2+(1-p)q+1-p<0\land (p >0 \lor p < 0)]\\ p<1 \end{cases}\\ \Longleftrightarrow~&\begin{cases}\exists q \in \mathbb{R} [(pq^2+(1-p)q+1-p<0\land p >0) \lor (pq^2+(1-p)q+1-p<0\land p < 0)]\\ p<1 \end{cases} \\ \Longleftrightarrow~&\begin{cases}\exists q \in \mathbb{R}[pq^2+(1-p)q+1-p<0\land p >0] \lor \exists q \in \mathbb{R}[pq^2+(1-p)q+1-p<0\land p < 0]\\ p<1 \end{cases}\\ \Longleftrightarrow~&\begin{cases}(\exists q \in \mathbb{R}[pq^2+(1-p)q+1-p<0]\land p >0) \lor (\exists q \in \mathbb{R}[pq^2+(1-p)q+1-p<0]\land p < 0)\\ p<1 \end{cases}\\ \Longleftrightarrow~&\begin{cases}((1-p)^2-4p(1-p)>0 \land p>0)\lor p < 0\\ p<1 \end{cases}\\ \Longleftrightarrow~&\begin{cases}((p-1)(5p-1)>0 \land p>0)\lor p < 0\\ p<1 \end{cases}\\ \Longleftrightarrow~&\begin{cases}0 < p < \frac{1}{5}\lor p < 0\\ p<1 \end{cases}\\ \Longleftrightarrow~&0 < p < \frac{1}{5}\lor p < 0 \end{align*} 解答終

一般的な解答においてやっている(であろう)ことの正当性が個人的にいまいち納得できないので,論理式で考えてみました。一般的な解答において感じるその不安感というか気持ち悪さは,上の解答で行っている恒真命題の追加,分配法則,\(\forall\)や\(\exists\)の支配域の変更などがぼかされているためではないかと思います。さらに,この解答においても一つ気になるのが()の部分です。一般に,\[\forall x[p(x)\lor q(x)] \Longleftarrow \forall x p(x)\lor \forall x q(x)\]すなわち全称記号は\(\lor\)に関して分配は出来ませんから,そこだけちょっと誤魔化しています。これについては別記事で詳しく考えてみようと思います。

解の公式

解の公式\(a \neq 0\)とする.\[ax^2+bx+c=0\]の解は,\[x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\]で与えられる.

ちょうど今時期の中学3年生が学ぶ\(2\)次方程式の解の公式です。中学では天下りに与えられ「覚えろ」の一言で済まされることがほとんどだと思いますし,僕自身も授業では証明は割愛しますといって飛ばしがちなので,ここに証明しておきます。見た目は難しそうですが,中学生でも一応既習の知識のみで理解できるはずです。文字の煩雑さに惑わされず,式をよーく睨んで意味を読み取ってみましょう。やっていることはごくごくシンプルです。

証明

\begin{align*}
&ax^2+bx+c=0\\
\Longleftrightarrow&~a\left(x^2+\frac{b}{a}x\right)+c=0\tag{1}\\
\Longleftrightarrow&~a\left(x^2+\frac{b}{a}x+\left(\frac{b}{2a}\right)^2-\left(\frac{b}{2a}\right)^2\right)+c=0\tag{2}\\
\Longleftrightarrow&~a\left(\left(x+\frac{b}{2a}\right)^2-\left(\frac{b}{2a}\right)^2\right)+c=0\tag{3}\\
\Longleftrightarrow&~a\left(x+\frac{b}{2a}\right)^2-a\cdot\frac{b^2}{4a^2}+c=0\tag{4}\\
\Longleftrightarrow&~a\left(x+\frac{b}{2a}\right)^2=\frac{b^2}{4a}-c\\
\Longleftrightarrow&~a\left(x+\frac{b}{2a}\right)^2=\frac{b^2-4ac}{4a}\\
\Longleftrightarrow&~\left(x+\frac{b}{2a}\right)^2=\frac{b^2-4ac}{4a^2}\\
\Longleftrightarrow&~\sqrt{\left(x+\frac{b}{2a}\right)^2}=\sqrt{\frac{b^2-4ac}{4a^2}}\tag{5}\\
\Longleftrightarrow&~\sqrt{\left(x+\frac{b}{2a}\right)^2}=\frac{\sqrt{b^2-4ac}}{\sqrt{(2a)^2}}\\
\Longleftrightarrow&~\left|x+\frac{b}{2a}\right|=\frac{\sqrt{b^2-4ac}}{\left|2a\right|}\tag{6}\\
\Longleftrightarrow&~x+\frac{b}{2a}=\pm\frac{\sqrt{b^2-4ac}}{2a}\tag{7}\\
\Longleftrightarrow&~x=-\frac{b}{2a}\pm\frac{\sqrt{b^2-4ac}}{2a}\\
\Longleftrightarrow&~x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
\end{align*}

証明終

\((1)\)は2つめの項までを\(a\)でくくりました。
\((2)\)は\(\left(\frac{b}{2a}\right)^2\)をたして,ひきました。プラマイゼロになるので結局\(0\)を加えているに過ぎず,したがって問題ありません。なぜそんなことをするのかというと,
\((3)\)で因数分解の公式\(x^2+2Ax+A^2=(x+A)^2\)が使えるようにするためです。
\((4)\)は分配法則により\(a\)を分配し,
\((5)\)は辺々\(\sqrt{ }\)をとりました。
\((6)\)は\(\sqrt{A^2}\)の定義を思い出しましょう。\(\sqrt{A^2}\)とは,「\(2\)乗して\(A^2\)となる正の数」でした。それは何ですか?「\(A\)」と答えた人,甘い。\(A\)が負の数である可能性は?例えば,\(A=-1\)なら?\(\sqrt{(-1)^2}=-1\)ってこと?「正の数」と定義したのに,負の数??おかしい。つまり,\(A\)がたとえ負の数であっても,正の数として表したいわけです。いわば,\(A\)の中身が正であろうが負であろうが,正の数として表したい。そんなときのための記号が,絶対値でしたね(絶対値の定義を「距離」として覚えてる人がいますが,今すぐ止めましょう)。なので\(\sqrt{A}=|A|\)
\((7)\)絶対値の“中身”の起こり得る組合せに着目して
\begin{align*}
&\text{\(x\)+\(\frac{b}{2a}\)が正,\(2a\)が正}\\
&\text{\(x\)+\(\frac{b}{2a}\)が正,\(2a\)が負}\\
&\text{\(x\)+\(\frac{b}{2a}\)が負,\(2a\)が正}\\
&\text{\(x\)+\(\frac{b}{2a}\)が負,\(2a\)が負}\\
\end{align*}の4通りの組み合わせがあることに注意すれば
\begin{align*}
(6)\Longleftrightarrow &+\left(x+\frac{b}{2a}\right)=\frac{\sqrt{b^2-4ac}}{+(2a)} \lor +\left(x+\frac{b}{2a}\right)=\frac{\sqrt{b^2-4ac}}{-(2a)}\\
&\lor-\left(x+\frac{b}{2a}\right)=\frac{\sqrt{b^2-4ac}}{+(2a)} \lor -\left(x+\frac{b}{2a}\right)=\frac{\sqrt{b^2-4ac}}{-(2a)}\\
\Longleftrightarrow &\left(x+\frac{b}{2a}\right)=+\frac{\sqrt{b^2-4ac}}{2a} \lor \left(x+\frac{b}{2a}\right)=-\frac{\sqrt{b^2-4ac}}{2a}\\
&\lor \left(x+\frac{b}{2a}\right)=-\frac{\sqrt{b^2-4ac}}{2a} \lor \left(x+\frac{b}{2a}\right)=+\frac{\sqrt{b^2-4ac}}{2a}\\
\Longleftrightarrow &x+\frac{b}{2a}=+\frac{\sqrt{b^2-4ac}}{2a} \lor x+\frac{b}{2a}=-\frac{\sqrt{b^2-4ac}}{2a}\\
\Longleftrightarrow &x+\frac{b}{2a}=\pm\frac{\sqrt{b^2-4ac}}{2a}
\end{align*}となります。

場合分け?

次の方程式を解け.\[|x+4|=3x\]

ちょうど今時期の数学Ⅰで登場する定番中の定番,絶対値の問題です。一般的な場合分け?による解答は教科書等参照。そうではなく,ここではあの例の解答は結局何をしているのか,論理式を用いて詳しく見てみます。

解答

\begin{align*}
&|x+4|=3x\\
\Longleftrightarrow~&|x+4|=3x \land (x+4 \geq 0 \lor x+4 < 0) \tag{1}\\
\Longleftrightarrow~&(|x+4|=3x \land x+4 \geq 0 ) \lor (|x+4|=3x \land x+4 < 0) \tag{2}\\
\Longleftrightarrow~&(x+4=3x \land x \geq -4 ) \lor (-x-4 =3x \land x < -4)\\
\Longleftrightarrow~&(x = 2 \land x \geq -4 ) \lor (x = -1 \land x < -4)\\
\Longleftrightarrow~& x = 2 \land x \geq -4 \tag{3}\\
\Longleftrightarrow~& x = 2 \tag{4}
\end{align*}

解答終

\((1)\)は恒真命題の追加
\((2)\)は分配法則
\((3)\)は矛盾命題の削除
\((4)\)は一般には\(P\land Q\Rightarrow P\)ですがここでは逆も明らかに成り立つ(\((4)\)の方程式\(x=2\)をみたす\(x\)は\(2\)のみですが,この\(2\)は\((3)\)の方程式\(x=2\)をみたし,かつ,\((3)\)の不等式\(x \geq -4\)をみたします)

こうしてみると何をしているのかが一目瞭然です。

◆無理不等式その2

次の式を\(\sqrt{\quad}\)のない形で表せ(同値変形せよ).
\[\sqrt{a} < b\]

恒真条件の追加と分配法則,矛盾命題の消去により,
\begin{align*}
&\sqrt{a} < b\\ \Longleftrightarrow~&\sqrt{a}< b \land (b \geq 0 \lor b < 0)\\ \Longleftrightarrow~&(\sqrt{a} < b \land b \geq 0)\lor (\sqrt{a} < b \land b < 0)\\ \Longleftrightarrow~&\sqrt{a} < b \land b \geq 0 \end{align*} ここからさらに変形を考えますが,前回同様,いきなり同値な変形は考えづらいので,必要性\((\Rightarrow)\)と十分性\((\Leftarrow)\)を別々に考えることにします. まず必要性\((\Rightarrow)\)から.\(\sqrt{a} \geq 0\)ですから,\(\sqrt{a} < b\)の両辺を2乗することができて,例えば次のように必要条件が得られます: \begin{align*} &\sqrt{a} < b \land b \geq 0 \Longrightarrow a < b^2 \land b \geq 0 \tag{1} \end{align*} 次にこの\((1)\)における十分性\((\Leftarrow)\)を考えてみます.当然,\(a < b^2\)の両辺に\(\sqrt{\quad}\)をとりたくなりますが,しかし\(a\)が正である保証は今手元の仮定にはありません.つまり\(\sqrt{\quad}\)をとることができず,戻れない.そこで,\((1)\)において必要条件をもう少し絞り出すことを考えます.欲しいのは\(a \geq 0\)ですが,\(\sqrt{a}\)の‘中身’は正ですから,必要条件は \[\sqrt{a} < b\land b \geq 0 \Longrightarrow a < b^2 \land b \geq 0 \land a \geq 0\] とできるはずです.そして改めて十分性を確認してみます. \begin{align*} a < b^2 \land b \geq 0 \land a \geq 0 \Longrightarrow &\sqrt{a} < \sqrt{b^2} \land b\geq 0 \land a \geq 0\\ \Longrightarrow &\sqrt{a} < |b| \land b \geq 0 \land a \geq 0\\ \Longrightarrow &\sqrt{a} < b \land b \geq 0 \land a \geq 0\\ \Longrightarrow &\sqrt{a} < b \land b \geq 0 \end{align*} となり戻れました.これで必要十分(同値)であることが分かりました.したがって\((1)\)の論理式は, \[\sqrt{a} < b \land b \geq 0 \Longleftrightarrow a < b^2 \land b \geq 0 \land a \geq 0 \Longleftrightarrow 0\leq a < b^2 \land b \geq 0 \] と書きかえれば同値になることが分かりました. 以上により,

\[\sqrt{a} < b \Longleftrightarrow 0\leq a < b^2 \land b \geq 0 \]

と同値変形できることが分かりました.

◆無理不等式その1

次の式を\(\sqrt{\quad}\)のない形で表せ(同値変形せよ).
\[\sqrt{a}>b\]

恒真条件の追加と分配法則により,
\begin{align*}
&\sqrt{a}>b\\
\Longleftrightarrow~&\sqrt{a}>b \land (b \geq 0 \lor b < 0)\\
\Longleftrightarrow~& (\sqrt{a}>b \land b \geq 0)\text{(ア)} \lor (\sqrt{a}>b \land b < 0) \text{(イ)}
\end{align*}

(ア)と(イ)を分けて考えます.

(まず(ア)について)
いきなり同値な変形は考えづらいので,必要性\((\Rightarrow)\)と十分性\((\Leftarrow)\)を別々に考えることにします. まず必要性\((\Rightarrow)\)から.今,\(b \geq 0\)ですから,\(\sqrt{a}>b\)の両辺を2乗することができて,例えば
\begin{align*}
&\sqrt{a}>b \land b \geq 0 \text{(ア)}\Longrightarrow a > b^2\tag{1}
\end{align*}
のように必要条件が得られます.次にこの\((1)\)における十分性\((\Leftarrow)\)を考えてみましょう.両辺が正ですから,\(\sqrt{\quad}\)をとることができますが,
\[a > b^2 \Longrightarrow \sqrt{a} > \sqrt{b^2} \Longrightarrow \sqrt{a} > |b|\]
となり(ア)に戻れません(\(b\)の正負がわからない).そこで,\((1)\)において(ア)の必要条件をもう少し絞り出しておきましょう.
\[\sqrt{a} > b\land b \geq 0 \text{(ア)}\Longrightarrow a > b^2 \land b \geq 0\]
そして十分性を確認してみます.
\begin{align*}
a > b^2 \land b \geq 0\Longrightarrow &\sqrt{a} > \sqrt{b^2} \land b\geq 0 \\
\Longrightarrow &\sqrt{a} > |b| \land b \geq 0 \\
\Longrightarrow &\sqrt{a} > b \land b \geq 0
\end{align*}
となりこれなら(ア)に戻れます.これで必要十分(同値)であることが分かりました.したがって\((1)\)の論理式は,
\[\sqrt{a} > b \land b \geq 0 \text{(ア)}\Longleftrightarrow a > b^2 \land b \geq 0 \tag{1′}\]
と書きかえれば同値になることが分かりました.

(次に(イ)について)
必要性\(\Rightarrow\)から見てみます.ここでは例えば明らかな必要性
\[(\sqrt{a} > b \land b < 0) \text{(イ)} \Longrightarrow b < 0 \tag{2}\] を考えてみます.逆(十分性)はどうか? \[b < 0 \Longrightarrow (\sqrt{a} > b \land b < 0) \text{(イ)}\]が言えるか?…残念ながら言えません.なぜなら\(a\)は\(\sqrt{\quad}\)の中にあるのだから正でなくてはなりませんが,しかし仮定には\(a\)の正負についての言及がないからです.このことを踏まえて\((2)\)で(イ)の必要条件を適切に絞り出しておきます.\(\sqrt{\quad}\)の‘中身’は正であることに着目して, \[(\sqrt{a} > b \land b < 0) \text{(イ)} \Longrightarrow a \geq 0 \land b < 0\] さてこれならどうでしょうか?逆(十分性)を見てみると \[a \geq 0 \land b < 0 \Longrightarrow (\sqrt{a} > b \land b < 0) \text{(イ)}\] は確かに言えます.したがって,\((2)\)の論理式は \[(\sqrt{a} > b \land b < 0) \text{(イ)} \Longleftrightarrow a \geq 0 \land b < 0\tag{2'}\] と書けば同値であることがわかりました. \((1'),(2')\)により,

\[\sqrt{a}>b \Longleftrightarrow (a > b^2 \land b \geq 0) \lor (a \geq 0 \land b < 0)\]

と同値変形できることが分かりました.

ちなみにもし,\(b \geq 0\)という条件を‘大前提’として奉れば,当然
\[\sqrt{a}>b \Longleftrightarrow a > b^2 \land b \geq 0\]
と書けます.

◆軌跡と同値変形その1

\begin{align*}
&\exists m \left[X=\frac{16m^2}{4m^2+1} \land Y=m(X-4)\land m^2<\frac{1}{12}\right]\\
\Longleftrightarrow~&\exists m\left[X=\frac{16m^2}{4m^2+1} \land Y=m(X-4)\land m^2<\frac{1}{12} \land (X=4 \lor X \neq 4)\right]\\
\Longleftrightarrow~&\exists m\left[\left(X=\frac{16m^2}{4m^2+1} \land Y=m(X-4)\land m^2<\frac{1}{12} \land X=4 \right)\right.\\
&\lor \left.\left(X=\frac{16m^2}{4m^2+1} \land Y=m(X-4)\land m^2<\frac{1}{12} \land X \neq 4\right)\right]\\
\Longleftrightarrow~&\exists m\left[X=\frac{16m^2}{4m^2+1} \land m=\frac{Y}{X-4}\land m^2<\frac{1}{12} \land X \neq 4\right]\tag{0}\\
\Longleftrightarrow~&X=\frac{16\left(\frac{Y}{X-4}\right)^2}{4\left(\frac{Y}{X-4}\right)^2+1} \land \left(\frac{Y}{X-4}\right)^2<\frac{1}{12} \land X \neq 4\\
\Longleftrightarrow~&\frac{(X-2)^2}{4}+Y^2 = 1 \land \left|\frac{Y}{X-4}\right|<\frac{1}{\sqrt{12}} \land X \neq 4\\
\Longleftrightarrow~&\frac{(X-2)^2}{4}+Y^2 = 1 \land |Y|<\frac{1}{\sqrt{12}}|X-4| \land X \neq 4\\
\Longleftrightarrow~&\frac{(X-2)^2}{4}+Y^2 = 1 \land 0 \leq X < 1 \land X \neq 4 &\tag{\(\ast\)}\\
\Longleftrightarrow~&\frac{(X-2)^2}{4}+Y^2 = 1 \land 0 \leq X < 1\\
\end{align*}

\((\ast)\)は下図による.


\((0)\)以降の別変形はこちら

連立方程式の解法は…「文字を減らす」方針?その2

下の記事を見直してたらちょっと気になったので一言.「文字を減らす」という方針について以前の記事に追加です.

\[\begin{align*}
&\begin{cases}
f(s,~t)=0\\
s=g(x,y)\\
t=h(x,y)
\end{cases}
\Longleftrightarrow
\begin{cases}
f(g(x,y),~h(x,y))=0\\
s=g(x,y)\\
t=h(x,y)
\end{cases}
\end{align*}
\]

です.

(理由)
\(\Rightarrow\)は第1式の\(s\)と\(t\)に第2,3式により\(s=g(x,y),~t=h(x,y)\)をそれぞれ代入すれば得られます.
\(\Leftarrow\)はは第1式の\(g(x,y)\)と\(h(x,y)\)を第2,3式により\(g(x,y)=s,~h(x,y)=t\)とおき直せば得られます.(ちなみにこれは,もし第2,3式\(g(x,y)=s,~h(x,y)=t\)がなければ逆が成り立たない,すなわち
\[
\begin{cases}
f(s,~t)=0\\
s=g(x,y)\\
t=h(x,y)
\end{cases}
\Longrightarrow
f(g(x,y),~h(x,y))=0\\
\]
であることを意味します.)

…(同値性という観点から言えば)文字は別に減らしてなんかいないことに注意.

しかしもし,
\[
\exists s \exists t\begin{cases}
f(s,~t)=0\\
s=g(x,y)\\
t=h(x,y)
\end{cases}
\]
なら,存在記号を処理することで,

\[\exists s \exists t\begin{cases}
f(s,~t)=0\\
s=g(x,y)\\
t=h(x,y)
\end{cases}
\Longleftrightarrow
f(g(x,y),~h(x,y))=0
\]

となります.見た目通り,文字\(s,t\)は消えます

同値変形,途中のアプローチの違い

\[\exists s \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \land s^2=4t \right]\]という主張の同値変形について見てみます.

【変形1】
\begin{align*}
&\exists s \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \land s^2=4t \right]&(0)\\
\Longleftrightarrow~&\exists s \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \land \frac{4Y^2}{(2-X)^2}=\frac{4X}{2-X}\right]&(1)\\
\Longleftrightarrow~&\exists s \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \land Y^2=X(2-X) \land X \neq 2 \right]&(2)\\
\Longleftrightarrow~&\exists s \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \right] \land Y^2=X(2-X) \land X \neq 2&(3)\\
\Longleftrightarrow~&X \neq 2 \land Y^2=X(2-X) \land X \neq 2&(4)\\
\Longleftrightarrow~&Y^2=X(2-X) \land X \neq 2&(5)\\
\Longleftrightarrow~&(X-1)^2+Y^2=1 \land X \neq 2
\end{align*}

\((2)\)は\(\frac{4Y^2}{(2-X)^2}=\frac{4X}{2-X} \Longleftrightarrow Y^2=X(2-X) \land X \neq 2\)
\((3)\)は\(Y^2=X(2-X) \land X \neq 2\)が変数\(s,t\)を含まないので,\(\exists s\exists t\)の支配域を変更することができるから
\((4)\)は\(\exists s \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \right] \Longleftrightarrow X \neq 2\)より
\((5)\)は
\[p \land q \Leftrightarrow q \land p,\quad p \land p \Leftrightarrow p\]
によります(いずれも真理値表から明らか)

【変形2】
\begin{align*}
&\exists s \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \land s^2=4t \right]&(0)’\\
\Longleftrightarrow~&\exists s \left[ \exists t \left[s = \frac{2Y}{2-X} \land t = \frac{X}{2-X} \land s^2=4t\right]\right] &(1)’\\
\Longleftrightarrow~&\exists s \left[s = \frac{2Y}{2-X} \land \exists t\left[ t = \frac{X}{2-X} \land s^2=4t\right]\right] &(2)’\\
\Longleftrightarrow~&\exists s \left[s = \frac{2Y}{2-X} \land s^2=\frac{4X}{2-X}\right] &(3)’\\
\Longleftrightarrow~&\left(\frac{2Y}{2-X}\right)^2=\frac{4X}{2-X} &(4)’\\
\Longleftrightarrow~&Y^2=X(2-X) \land X \neq 2&(5)’\\
\Longleftrightarrow~&(X-1)^2+Y^2=1 \land X \neq 2
\end{align*}

\((1)’\)はそもそも\(\exists s\left[ \exists t[p(s,t)]\right]\)の略記が\(\exists s \exists t[p(s,t)]\)だから
\((2)’\)は支配域の変更.\((2)\)と同じ
\((3)’\)は\(\exists t\)の処理
\((4)’\)は\(\exists s\)の処理
\((5)’\)は\((1)\)と同様の同値変形によります

\((0)’\)から\(~(4)’\)までの同値変形はこのように書くと厳ついですがやってることは結局\(s,t\)の消去です.通常は\((0)’\)から\((4)’\)まで一気に一行で処理してしまうところだと思います.

\((0)\)から\((1)\)への変形と\((0)’\)から\((4)’\)への変形に違いに注意しましょう(詳しくはこの記事にて.関連:「『存在する』の扱い」「連立方程式の解法は…『文字を減らす』方針?」).文字を「消去する」ことを正しく認識していないとこういう箇所で間違えてしまうので注意.

【変形1】【変形2】いずれにしても同じ結論です.途中のアプローチが違えど,論理式を正しく扱いすれば必然的に同じ結論が得られる,ということでした.