2次の不定方程式(つづき1)

次の方程式を満たす整数\(x,y\)の値を求めよ.

    1. \(2x^2+3xy-2y^2-3x+4y-5=0\)
    2. \(x^2-4xy+5y^2+2x-5y-1=0\)
  • 前回記事(上の問題)の1. \[2x^2+3xy-2y^2-3x+4y-5=0\]を因数分解せずに解くとどうなるかを見てみます。前と同様,
    \begin{align*}
    &2x^2+3xy-2y^2-3x+4y-5=0\\
    \Longleftrightarrow~&x=\frac{-3(y-1)\pm \sqrt{25y^2-50y+49}}{4}
    \end{align*}と変形し,ここから必要条件として\[25y^2-50y+49\geq 0\]が得られますが,しかしこれは何の旨味もないものです。なぜならこの式を満たす\(y\in \mathbb{Z}\)は無数にあり,\(y\)が絞れないからです。そこで必要条件として別のものをとり出してみます。

    別解

    \begin{align*}
    &2x^2+3xy-2y^2-3x+4y-5=0\\
    \Longleftrightarrow~&x=\frac{-3(y-1)\pm \sqrt{25y^2-50y+49}}{4}
    \end{align*}\(x\)は整数であるから\[25y^2-50y+49=k^2\quad(k=0,1,2,\cdots)\]と表せることが必要.ここで
    \begin{align*}
    &25y^2-50y+49=k^2\\
    \Longleftrightarrow~&25(y^2-2y+1-1)-k^2+49=0\\
    \Longleftrightarrow~&25(y-1)^2-k^2=-24\\
    \Longleftrightarrow~&(5(y-1)-k)(5(y-1)+k)=-24\\
    \Longleftrightarrow~&(5y-k-5)(5y+k-5)=-24(=-2^3\times 3)
    \end{align*}
    また,\((5y-k-5)+(5y+k-5)=2(5y-3)(=\text{偶数})\)であることから\(5y-k-5\)と\(5y+k-5\)の偶奇は一致すること,そして\(5y-k-5<5y+k-5\)であることから,\((5y-k-5,5y+k-5)\)の組み合わせは\[(-2^1,2^2\cdot 3),(-2^2,2^1\cdot 3),(-2^1\cdot 3,2^2),(-2^2\cdot 3,2^1)\]の\(4\)通りであることが分かる.これより\(y=2,\frac{6}{5},\frac{4}{5},0\)が得られ,\(y\)は整数だから\(y=0,2\)で\(x=-1,1\).したがって求める答えは\((x,y)=(-1,0),(1,2)\)である.

    別解終

    途中,必要条件なのに逆の考察をしていないのはやはり同値だからです。論理式で記述すると(つづく)

    2次の不定方程式

    次の方程式を満たす整数\(x,y\)の値を求めよ.

    1. \(2x^2+3xy-2y^2-3x+4y-5=0\)
    2. \(x^2-4xy+5y^2+2x-5y-1=0\)
  • 1.
    整数問題の大まかなタイプとしては,

    因数分解,範囲を絞ってしらみつぶし,合同式の利用(余りで分類)

    というのは有名ですが,このうち一つ目の因数分解を狙うというのは自然な発想かと思います。

    (因数分解の方針その1)
    \begin{align*}
    &2x^2+3xy-2y^2-3x+4y-5=0\\
    \Longleftrightarrow~&2x^2+3(y-1)x-2y^2+4y-5=0\\
    \Longleftrightarrow~&2x^2+3(y-1)x-2(y^2-2y+1-1)-5=0\\
    \Longleftrightarrow~&2x^2+3(y-1)x-2(y-1)^2-3=0\\
    \Longleftrightarrow~&(2x-y+1)(x+2y-2)=3
    \end{align*}

    3行目の変形がちょっと苦しい…?^^;

    (因数分解の方針その2)
    \begin{align*}
    &2x^2+3xy-2y^2-3x+4y-5=0\\
    \Longleftrightarrow~&2x^2+3(y-1)x-2y^2+4y-5=0\\
    \Longleftrightarrow~&2\left(x^2+\frac{3(y-1)}{2}x+\frac{9(y-1)^2}{16}-\frac{9(y-1)^2}{16}\right)-2y^2+4y-5=0\\
    \Longleftrightarrow~&2\left(x+\frac{3(y-1)}{4}\right)^2-\frac{9(y-1)^2}{8}-2y^2+4y-5=0\\
    \Longleftrightarrow~&(4x+3(y-1))^2-9(y-1)^2-16y^2+32y-40=0\\
    \Longleftrightarrow~&(4x+3(y-1))^2-25y^2+50y-49=0\\
    \Longleftrightarrow~&(4x+3(y-1))^2-25(y^2-2y+1-1)-49=0\\
    \Longleftrightarrow~&(4x+3(y-1))^2-25(y-1)^2=24\\
    \Longleftrightarrow~&(4x-2y+2)(4x+8y-8)=24\\
    \Longleftrightarrow~&(2x-y+1)(x+2y-2)=3
    \end{align*}平方完成で強引に。

    (因数分解の方針その3)
    \(2x^2+3xy-2y^2=(2x-y)(x+2y)\)に着目し,\((2x-y+a)(x+2y+b)\)という式の展開式を考えます。すると\[(2x-y+a)(x+2y+b)=2x^2+3xy-2y^2+Ax+By+C\]という与式の形が現れますから,\(A=-3,B=4\)を解いて,\(a,b\)を求めます(これを\(a_0,b_0\)とします。これにより\(C=C_0\)も求まる):\[(2x-y+a_0)(x+2y+b_0)=2x^2+3xy-2y^2-3x+4y+C_0\]与式より\(2x^2+3xy-2y^2-3x+4y=5\)でしたから
    \begin{align*}
    &(2x-y+a_0)(x+2y+b_0)=2x^2+3xy-2y^2-3x+4y+C_0\\
    \Longleftrightarrow&~(2x-y+a_0)(x+2y+b_0)=5+C_0
    \end{align*}を得ます。以上を実際行うと,
    \[(2x-y+1)(x+2y-2)=2x^2+3xy-2y^2-3x+4y-2=5-2=3\]となります。

    …ともあれ因数分解できました。あとは右辺の因数の組み合わせが\((1,3),(-1,-3),(3,1),(-3,-1)\)のみであることから\((x,y)=(1,2),(-1,0)\)を得ます。

    2.
    これも因数分解…と思いきや,1.のようにうまく因数分解できない。お手上げか…?
    そこで姿勢を変えて論理で攻めてみます

    解答
    \begin{align*}
    &x^2-4xy+5y^2+2x-5y-1=0\\
    \Longleftrightarrow~&x^2-2(2y-1)x+5y^2-5y-1=0\\
    \Longleftrightarrow~&x=(2y-1)\pm\sqrt{-y^2+y+2}
    \end{align*}これが整数解をもつならば,\(-y^2+y+2\geq 0\)であることが必要
    \begin{align*}
    &-y^2+y+2\geq 0\\
    \Longleftrightarrow~&y^2-y-2\leq 0\\
    \Longleftrightarrow~&(y-2)(y+1)\leq 0\\
    \Longleftrightarrow~&-1 \leq y\leq 2
    \end{align*}

    \(y\)は整数であるから,\(y=-1,0,1,2\)
    \(y=-1\)のとき\(x=-3\),
    \(y=0\)のとき\(x=-1\pm \sqrt{2}\),
    \(y=1\)のとき\(x=1\pm \sqrt{2}\),
    \(y=2\)のとき\(x=3\),

    ゆえに\((x,y)=(-1,-3),(2,3)\)が求めるものである.

    解答終

    必要条件なのに逆の考察をしていないのは同値だからです。論理式で記述すると
    \begin{align*}
    &x,y\in \mathbb{Z},x^2-4xy+5y^2+2x-5y-1=0\\
    \Longleftrightarrow~&x,y\in \mathbb{Z} \land x=(2y-1)\pm\sqrt{-y^2+y+2}\\
    \Longleftrightarrow~& x,y\in \mathbb{Z} \land x=(2y-1)\pm\sqrt{-y^2+y+2} \land -y^2+y+2\geq 0\\
    \Longleftrightarrow~& x,y\in \mathbb{Z} \land x=(2y-1)\pm\sqrt{-y^2+y+2} \land -1\leq y \leq 2\\
    \Longleftrightarrow~& x,y\in \mathbb{Z} \land x=(2y-1)\pm\sqrt{-y^2+y+2}\\
    &\land (y=-1 \lor y=0 \lor y=1 \lor y=2)\\
    \Longleftrightarrow~& \left(x,y\in \mathbb{Z} \land x=(2y-1)\pm\sqrt{-y^2+y+2} \land y=-1\right)\\
    \lor & \left(x,y\in \mathbb{Z} \land x=(2y-1)\pm\sqrt{-y^2+y+2} \land y=0\right)\\
    \lor & \left(x,y\in \mathbb{Z} \land x=(2y-1)\pm\sqrt{-y^2+y+2} \land y=1\right)\\
    \lor & \left(x,y\in \mathbb{Z} \land x=(2y-1)\pm\sqrt{-y^2+y+2} \land y=2\right)\\
    \Longleftrightarrow~& (x,y\in \mathbb{Z} \land x=-3 \land y=-1)\\
    \lor & (x,y\in \mathbb{Z} \land x=-1\pm \sqrt{2} \land y=0)\\
    \lor & (x,y\in \mathbb{Z} \land x=1\pm\sqrt{2} \land y=1)\\
    \lor & (x,y\in \mathbb{Z} \land x=3 \land y=2)\\
    \Longleftrightarrow~&(x,y\in \mathbb{Z} \land x=-3 \land y=-1)\lor (x,y\in \mathbb{Z} \land x=3 \land y=2)\\
    \Longleftrightarrow~&x,y\in \mathbb{Z} \land (( x=-3 \land y=-1)\lor (x=3 \land y=2))\\
    \Longleftrightarrow~&( x=-3 \land y=-1)\lor (x=3 \land y=2)
    \end{align*}ということをしています。ちなみに,\(1.,2.\)それぞれを図示すると\(1.\)は双曲線,\(2.\)は楕円になります。

     

    不定方程式の解法

    不定方程式の解法について考察してみます.

    不定方程式\[49x-23y=1\]の解となる最小の自然数\(x\)を答えよ.

    (2019 センター試験数学Ⅰ・A 改題)

    定石的には,ユークリッドの互除法により特殊解を見つけて,それを代入したものを辺々引いて・・・という手順を踏みますが,合同式を利用すれば

    【解答】

    以下,\(\mathrm{mod} 23\)とする.

    \[
    \begin{align*}
    &49x-23y\equiv1\\
    &49x\equiv1\\
    &3x\equiv1\\
    &24x\equiv8\\
    &x\equiv8\\
    \end{align*}
    \]

    したがって,一般解は\(x=23k+8\)(\(k\)は任意の整数)であるから答えは\(8\)

    【解答終】

    ・・・と,このようにスピーディーに解答できるので,ぜひマスターしておきたいところです.変形のイロハについてもいずれ記事にしたいと思ってます.塾でも希望者には合同式講座を開催しますので,ぜひ参加してください^^

    © 2023 佐々木数学塾, All rights reserved.