原因の確率

教科書では「研究」「発展」などに分類され,端っこの方に追いやれている話題です.授業でも扱わないことが多いので,無視して先に進む人も多いと思いますが,これは実はとても面白い話題です.今回はこの話題について触れてみます.

Aさんはがん検査を受けた.その結果は「要精密検査」であった.この検査は,実際にがんの人が要精密検査とされる確率が\(90\%\)で,実際にはがんではないのに要精密検査とされる確率が\(10\%\)であるような検査である.検診を受ける人の1000人に1人は実際にがんにかかっているとすると,Aさんが実際にがんである確率はいくらか.

Aさんを自分に置き換えて考えてみましょう.検査を受けたら「要精密検査」で,実際にがんの人が要精密検査とされる確率が\(90\%\)と言われたら,「ああ自分はがんなんだ…」と考え落ち込むのではないでしょうか.が,落ち着むのは尚早です.今置かれた状況をよく見ると「『要精密検査』という結果が与えられたときの,実際にがんである確率」ですから,これは条件付き確率です.では,実際に計算して自分ががんである確率を求めてみましょう!(注意:条件付き確率ベイズの定理についての知識が必要になります.未習の人はこれらの記事を先に読んでみてください.)条件付き確率の定義より,

\[P(\text{実際にがん}|\text{要精密検査})=\frac{P(\text{実際にがん}\cap\text{要精密検査})}{P(\text{要精密検査})}\]

まず,分子から求めてみます.確率の乗法定理より,
\[P(\text{実際にがん}\cap\text{要精密検査})=P(\text{実際にがん})P(\text{要精密検査}|\text{実際にがん})\]
です.問題文より,
\[P(\text{実際にがん})=\frac{1}{1000},\quad P(\text{要精密検査}|\text{実際にがん})=\frac{90}{100}\]
です.ですから分子は\[\frac{1}{1000}\times\frac{90}{100}\]となります.

次に分母.\(P(\text{要精密検査})\)つまり「『要精密検査』とされる確率」です.「『要精密検査』とされる」という状況には2通りあります.すなわち,

          • 「実際にがんで,『要精密検査』」
          • 「実際にはがんではないのに,『要精密検査』」

という2通りの場合です.それぞれ

          • \(P(\text{実際にがん}\cap \text{要精密検査})\)
          • \(P(\text{実際はがんではない}\cap \text{要精密検査})\)

と表されますから,結局分母は\[P(\text{実際にがん}\cap \text{要精密検査})+P(\text{実際はがんではない}\cap \text{要精密検査})\]と表されます(全確率の定理).さらに,確率の乗法定理より,この式は
\[P(\text{実際にがん})P(\text{要精密検査}|\text{実際にがん})+P(\text{実際はがんではない})P(\text{要精密検査}|\text{実際はがんではない})\]と表されます.前の項は前半で求めました.\(\frac{1}{1000}\times \frac{90}{100}\).後ろの項は,問題文より,
\[P(\text{実際はがんではない})=\frac{999}{1000},\quad P(\text{要精密検査}|\text{実際はがんではない})=\frac{10}{100}\]ですから\(\frac{999}{1000}\times\frac{10}{100}\).ですから分母は
\[\frac{1}{1000}\times \frac{90}{100}+\frac{999}{1000}\times\frac{10}{100}\]となります.したがって,求める確率\(P(\text{実際にがん}|\text{要精密検査})\)は,
\[
\begin{align*}
P(\text{実際にがん}|\text{要精密検査})&=\frac{\frac{1}{1000}\times\frac{90}{100}}{\frac{1}{1000}\times \frac{90}{100}+\frac{999}{1000}\times\frac{10}{100}}\\
&=\frac{1\times 90}{1\times 90 +999\times 10}\\
&=\frac{9}{9+999}\\
&=\frac{1}{112}\approx 0.00893
\end{align*}
\]となります.なんと,「要精密検査」と言われ実際にがんである確率はたったの\(0.00893\),つまり\(1\%\)にも満たない,ということです!

このように,確率は時として人間の直感を大きく裏切ります.しかし,論理によってはじき出された結果である以上,人間の感情としてどう感じようとそれは受け入れざるを得ない.そこが数学の面白さ・頼もしさのひとつだと思います.