絶対値

生徒に絶対値の定義は?と聞くと十中八九「距離です」と答えます。実際,教科書を見ると

数直線上で,実数\(a\)に対応する点と原点との距離を\(a\)の絶対値といい,記号\(|a|\)で表す

『高等学校 数学Ⅰ』数研出版

 
とあります。\(|3|\)とか\(|-5|\)などを考えるにはこの理解で問題ないでしょう。

しかし,この少し後で学ぶ\(|x|\)や\(|x-4|\)などを含む方程式・不等式が現れると途端に分からなくなる,という生徒がすごく多いのです。確かに「『絶対値は距離』だから\(x-4\)までのキョリ?どういうこと??」と大混乱してしまうのはまったく無理もないと思います。これは,その生徒ではなく教科書の定義の仕方自体に原因があると思う。「距離」なんてものを持ち出して中途半端に視覚化して理解させようとするから(応用問題において)逆に混乱させてしまう。

というわけで教科書はあまり当てにならないので,手元の微分積分学の本では絶対値をどう定義しているか見てみると,例えば

\(M=\{a,-a\}\)に対し\(\max M=|a|\)とかき,\(a\)の絶対値という.

笠原晧司『微分積分学』サイエンス社

 
とあります。これは換言すれば,次のようになります

絶対値の定義\[|a|:=\begin{cases}a\quad(a\geq 0) \\ -a \quad(a<0)\end{cases}\]

スローガン風に言えば,「‘中身’をムリヤリ正にする記号」,ということです。ここに「数直線」や「距離」などを持ち出す必要はありません。多くの数学書がそうしているように,これを明確に定義とすべきだと思います。このように理解しておけば,上記の\(|x-4|\)の例でいえば

\(|x-4|\)?中身\(x-4\)をムリヤリ正にしたいわけね
→そら中身の\(x-4\)が正か負かで扱い変わるでしょ
→でも\(x-4\)の正負って\(x\)に入る値によって変わるよね
→\(x\geq 4\)なら正なんだからはなから正だわこれ,そのまま外すわ
→\(x<4\)なら負ね,こいつをムリヤリ正にしたいってことは\(-1\)かければいいよね

と自然に頭が動くと思う。

「(困ったら)定義に戻って考える」というのは数学の重要な姿勢のひとつだと思うんですが,そのように定義に立ち戻って考えた人間が混乱するような記述はいかがなものか,と思います(が,教科書通りやらないと注意されたりするんだよなあ…)。

(おわり)

 

 

「すべての」と「ある(存在する)」

数Ⅰの問題です。

\(y=p(x-q)^2+q~(p \neq 0)\)上のすべての点が放物線\(y=x^2-1\)の下側にあるような実数\(q\)が存在するときの実数\(p\)の範囲を求めよ.

まず,「~するときの範囲を求めよ」(「~するための条件を求めよ」)というのは「~するための必要十分条件を求めよ」と問うていると思われます。したがって「\(y=p(x-q)^2+q\)上のすべての点が放物線\(y=x^2-1\)の下側にあるような実数\(q\)が存在する」を同値変形することを考えます。日本語のままでは考えづらいので,この主張を論理記号を用いて表わしてみます。すると\[\exists q \in \mathbb{R} \forall x \in \mathbb{R}[x^2-1>p(x-q)^2+q]\]となります。したがって,

解答

\begin{align*}
&\exists q \in \mathbb{R} \forall x \in \mathbb{R}[x^2-1>p(x-q)^2+q]\\
\Longleftrightarrow~&\exists q \in \mathbb{R} \forall x \in \mathbb{R}[(1-p)x^2+2pqx-pq^2-q-1>0]\\
\Longleftrightarrow~&\exists q \in \mathbb{R} \forall x \in \mathbb{R} \begin{cases}(1-p)x^2+2pqx-pq^2-q-1>0 \\ 1-p>0 \lor 1-p=0 \lor 1-p < 0 \end{cases}\\ \Longleftrightarrow~&\exists q \in \mathbb{R} \forall x \in \mathbb{R}[((1-p)x^2+2pqx-pq^2-q-1>0\land p<1)\\ &\lor ((1-p)x^2+2pqx-pq^2-q-1>0\land p=1) \\
&\lor ((1-p)x^2+2pqx-pq^2-q-1>0\land p>1) ]\tag{1}
\end{align*}
ここで,\[\forall x\in \mathbb{R}[(1-p)x^2+2pqx-pq^2-q-1>0\land p=1]\]と\[\forall x\in \mathbb{R}[(1-p)x^2+2pqx-pq^2-q-1>0\land p>1]\]は偽の命題であるから,\((1)\)は
\[(1)\Longleftrightarrow~\exists q \in \mathbb{R} \forall x \in \mathbb{R}[(1-p)x^2+2pqx-pq^2-q-1>0\land p<1]\]とできる().したがって,
\begin{align*}
(1)\Longleftrightarrow~&\exists q \in \mathbb{R} \forall x \in \mathbb{R}[(1-p)x^2+2pqx-pq^2-q-1>0\land p<1]\\ \Longleftrightarrow~&\exists q \in \mathbb{R} [\forall x \in \mathbb{R}[(1-p)x^2+2pqx-pq^2-q-1>0]\land p<1]\\ \Longleftrightarrow~&\exists q \in \mathbb{R} [p^2q^2-(1-p)(-pq^2-q-1)<0\land p<1]\\ \Longleftrightarrow~&\exists q \in \mathbb{R} [p^2q^2-(1-p)(-pq^2-q-1)<0]\land p<1\\ \Longleftrightarrow~&\begin{cases}\exists q \in \mathbb{R} [pq^2+(1-p)q+1-p<0\land (p >0 \lor p < 0)]\\ p<1 \end{cases}\\ \Longleftrightarrow~&\begin{cases}\exists q \in \mathbb{R} [(pq^2+(1-p)q+1-p<0\land p >0) \lor (pq^2+(1-p)q+1-p<0\land p < 0)]\\ p<1 \end{cases} \\ \Longleftrightarrow~&\begin{cases}\exists q \in \mathbb{R}[pq^2+(1-p)q+1-p<0\land p >0] \lor \exists q \in \mathbb{R}[pq^2+(1-p)q+1-p<0\land p < 0]\\ p<1 \end{cases}\\ \Longleftrightarrow~&\begin{cases}(\exists q \in \mathbb{R}[pq^2+(1-p)q+1-p<0]\land p >0) \lor (\exists q \in \mathbb{R}[pq^2+(1-p)q+1-p<0]\land p < 0)\\ p<1 \end{cases}\\ \Longleftrightarrow~&\begin{cases}((1-p)^2-4p(1-p)>0 \land p>0)\lor p < 0\\ p<1 \end{cases}\\ \Longleftrightarrow~&\begin{cases}((p-1)(5p-1)>0 \land p>0)\lor p < 0\\ p<1 \end{cases}\\ \Longleftrightarrow~&\begin{cases}0 < p < \frac{1}{5}\lor p < 0\\ p<1 \end{cases}\\ \Longleftrightarrow~&0 < p < \frac{1}{5}\lor p < 0 \end{align*} 解答終

一般的な解答においてやっている(であろう)ことの正当性が個人的にいまいち納得できないので,論理式で考えてみました。一般的な解答において感じるその不安感というか気持ち悪さは,上の解答で行っている恒真命題の追加,分配法則,\(\forall\)や\(\exists\)の支配域の変更などがぼかされているためではないかと思います。さらに,この解答においても一つ気になるのが()の部分です。一般に,\[\forall x[p(x)\lor q(x)] \Longleftarrow \forall x p(x)\lor \forall x q(x)\]すなわち全称記号は\(\lor\)に関して分配は出来ませんから,そこだけちょっと誤魔化しています。これについては別記事で詳しく考えてみようと思います。

解の公式

解の公式\(a \neq 0\)とする.\[ax^2+bx+c=0\]の解は,\[x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}\]で与えられる.

ちょうど今時期の中学3年生が学ぶ\(2\)次方程式の解の公式です。中学では天下りに与えられ「覚えろ」の一言で済まされることがほとんどだと思いますし,僕自身も授業では証明は割愛しますといって飛ばしがちなので,ここに証明しておきます。見た目は難しそうですが,中学生でも一応既習の知識のみで理解できるはずです。文字の煩雑さに惑わされず,式をよーく睨んで意味を読み取ってみましょう。やっていることはごくごくシンプルです。

証明

\begin{align*}
&ax^2+bx+c=0\\
\Longleftrightarrow&~a\left(x^2+\frac{b}{a}x\right)+c=0\tag{1}\\
\Longleftrightarrow&~a\left(x^2+\frac{b}{a}x+\left(\frac{b}{2a}\right)^2-\left(\frac{b}{2a}\right)^2\right)+c=0\tag{2}\\
\Longleftrightarrow&~a\left(\left(x+\frac{b}{2a}\right)^2-\left(\frac{b}{2a}\right)^2\right)+c=0\tag{3}\\
\Longleftrightarrow&~a\left(x+\frac{b}{2a}\right)^2-a\cdot\frac{b^2}{4a^2}+c=0\tag{4}\\
\Longleftrightarrow&~a\left(x+\frac{b}{2a}\right)^2=\frac{b^2}{4a}-c\\
\Longleftrightarrow&~a\left(x+\frac{b}{2a}\right)^2=\frac{b^2-4ac}{4a}\\
\Longleftrightarrow&~\left(x+\frac{b}{2a}\right)^2=\frac{b^2-4ac}{4a^2}\\
\Longleftrightarrow&~\sqrt{\left(x+\frac{b}{2a}\right)^2}=\sqrt{\frac{b^2-4ac}{4a^2}}\tag{5}\\
\Longleftrightarrow&~\sqrt{\left(x+\frac{b}{2a}\right)^2}=\frac{\sqrt{b^2-4ac}}{\sqrt{(2a)^2}}\\
\Longleftrightarrow&~\left|x+\frac{b}{2a}\right|=\frac{\sqrt{b^2-4ac}}{\left|2a\right|}\tag{6}\\
\Longleftrightarrow&~x+\frac{b}{2a}=\pm\frac{\sqrt{b^2-4ac}}{2a}\tag{7}\\
\Longleftrightarrow&~x=-\frac{b}{2a}\pm\frac{\sqrt{b^2-4ac}}{2a}\\
\Longleftrightarrow&~x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
\end{align*}

証明終

\((1)\)は2つめの項までを\(a\)でくくりました。
\((2)\)は\(\left(\frac{b}{2a}\right)^2\)をたして,ひきました。プラマイゼロになるので結局\(0\)を加えているに過ぎず,したがって問題ありません。なぜそんなことをするのかというと,
\((3)\)で因数分解の公式\(x^2+2Ax+A^2=(x+A)^2\)が使えるようにするためです。
\((4)\)は分配法則により\(a\)を分配し,
\((5)\)は辺々\(\sqrt{ }\)をとりました。
\((6)\)は\(\sqrt{A^2}\)の定義を思い出しましょう。\(\sqrt{A^2}\)とは,「\(2\)乗して\(A^2\)となる正の数」でした。それは何ですか?「\(A\)」と答えた人,甘い。\(A\)が負の数である可能性は?例えば,\(A=-1\)なら?\(\sqrt{(-1)^2}=-1\)ってこと?「正の数」と定義したのに,負の数??おかしい。つまり,\(A\)がたとえ負の数であっても,正の数として表したいわけです。いわば,\(A\)の中身が正であろうが負であろうが,正の数として表したい。そんなときのための記号が,絶対値でしたね(絶対値の定義を「距離」として覚えてる人がいますが,今すぐ止めましょう)。なので\(\sqrt{A}=|A|\)
\((7)\)絶対値の“中身”の起こり得る組合せに着目して
\begin{align*}
&\text{\(x\)+\(\frac{b}{2a}\)が正,\(2a\)が正}\\
&\text{\(x\)+\(\frac{b}{2a}\)が正,\(2a\)が負}\\
&\text{\(x\)+\(\frac{b}{2a}\)が負,\(2a\)が正}\\
&\text{\(x\)+\(\frac{b}{2a}\)が負,\(2a\)が負}\\
\end{align*}の4通りの組み合わせがあることに注意すれば
\begin{align*}
(6)\Longleftrightarrow &+\left(x+\frac{b}{2a}\right)=\frac{\sqrt{b^2-4ac}}{+(2a)} \lor +\left(x+\frac{b}{2a}\right)=\frac{\sqrt{b^2-4ac}}{-(2a)}\\
&\lor-\left(x+\frac{b}{2a}\right)=\frac{\sqrt{b^2-4ac}}{+(2a)} \lor -\left(x+\frac{b}{2a}\right)=\frac{\sqrt{b^2-4ac}}{-(2a)}\\
\Longleftrightarrow &\left(x+\frac{b}{2a}\right)=+\frac{\sqrt{b^2-4ac}}{2a} \lor \left(x+\frac{b}{2a}\right)=-\frac{\sqrt{b^2-4ac}}{2a}\\
&\lor \left(x+\frac{b}{2a}\right)=-\frac{\sqrt{b^2-4ac}}{2a} \lor \left(x+\frac{b}{2a}\right)=+\frac{\sqrt{b^2-4ac}}{2a}\\
\Longleftrightarrow &x+\frac{b}{2a}=+\frac{\sqrt{b^2-4ac}}{2a} \lor x+\frac{b}{2a}=-\frac{\sqrt{b^2-4ac}}{2a}\\
\Longleftrightarrow &x+\frac{b}{2a}=\pm\frac{\sqrt{b^2-4ac}}{2a}
\end{align*}となります。

★P270

\((a_n)_{n\in \mathbb{N}},(b_n)_{n\in \mathbb{N}}\)を\(\mathbb{R}\)の点列とする.このとき\[\lim_{n\rightarrow \infty} a_n =a,~\lim_{n\rightarrow \infty} b_n =b,~a_n\leq b_n \Longrightarrow a \leq b\]

証明の途中で出てきました。直観的にはマジで明らかだけどちょっと気になったので調べてみます。高校数学ではこれをアタリマエとして使っていると思います。\(a_n\leq b_n\)はもちろん\(\forall n \in \mathbb{N} [a_n\leq b_n]\)の略記です。

証明

\[\lim_{n\rightarrow \infty} a_n =a,\lim_{n\rightarrow \infty} b_n =b,a_n\leq b_n \land a > b\]と仮定する.\(\forall \epsilon >0 \exists n_1\in \mathbb{N} [n>n_1 \Rightarrow d(a_n,a)<\epsilon]\)であるから\(\epsilon\)として例えば\(\frac{a-b}{3}>0\)をとると,
\begin{align*}
d(a_n,a)<\frac{a-b}{3}\Longleftrightarrow~&|a_n-a| < \frac{a-b}{3}\\ \Longleftrightarrow~&-\frac{a-b}{3}< a_n-a < \frac{a-b}{3}\\ \Longleftrightarrow~&a-\frac{a-b}{3}< a_n < a+\frac{a-b}{3}\\ \end{align*}他方,\(\forall \epsilon >0 \exists n_2\in \mathbb{N} [n>n_2 \Rightarrow d(b_n,b)<\epsilon]\)であるから上と同様に\(\epsilon=\frac{a-b}{3}>0\)として\[d(b_n,b)<\frac{a-b}{3}\Longleftrightarrow~b-\frac{a-b}{3}< b_n < b+\frac{a-b}{3}\]ここで,\[a-\frac{a-b}{3}-\left(b+\frac{a-b}{3}\right)=\frac{a-b}{3}>0\]これは\(a_n \leq b_n\)に反する.

証明終

これで安心(^^)!(死んだ目)

場合分け?

次の方程式を解け.\[|x+4|=3x\]

ちょうど今時期の数学Ⅰで登場する定番中の定番,絶対値の問題です。一般的な場合分け?による解答は教科書等参照。そうではなく,ここではあの例の解答は結局何をしているのか,論理式を用いて詳しく見てみます。

解答

\begin{align*}
&|x+4|=3x\\
\Longleftrightarrow~&|x+4|=3x \land (x+4 \geq 0 \lor x+4 < 0) \tag{1}\\
\Longleftrightarrow~&(|x+4|=3x \land x+4 \geq 0 ) \lor (|x+4|=3x \land x+4 < 0) \tag{2}\\
\Longleftrightarrow~&(x+4=3x \land x \geq -4 ) \lor (-x-4 =3x \land x < -4)\\
\Longleftrightarrow~&(x = 2 \land x \geq -4 ) \lor (x = -1 \land x < -4)\\
\Longleftrightarrow~& x = 2 \land x \geq -4 \tag{3}\\
\Longleftrightarrow~& x = 2 \tag{4}
\end{align*}

解答終

\((1)\)は恒真命題の追加
\((2)\)は分配法則
\((3)\)は矛盾命題の削除
\((4)\)は一般には\(P\land Q\Rightarrow P\)ですがここでは逆も明らかに成り立つ(\((4)\)の方程式\(x=2\)をみたす\(x\)は\(2\)のみですが,この\(2\)は\((3)\)の方程式\(x=2\)をみたし,かつ,\((3)\)の不等式\(x \geq -4\)をみたします)

こうしてみると何をしているのかが一目瞭然です。

★P263(問題4の一部)

\[\forall \epsilon >0 \exists \delta >0[d^{\prime\prime}(x,y) \Longrightarrow d(x,y)<\epsilon]\]を示せ.ただし,\(d^{\prime\prime}(x,y):=\min\{1,d(x,y)\}\)

証明

与えられた\(\epsilon\)が\(\epsilon < 1\)であれば\(\delta = \epsilon\)と定め,\(\epsilon \geq 1\)であれば\(\delta = \delta^{\prime} < 1 (\leq \epsilon)\)と定めればよい.以下,それを確かめる.

\(\epsilon < 1\)のとき:
\(d^{\prime\prime}(x,y):=\min\{1,d(x,y)\}<\epsilon \).\(1 \leq d(x,y)\)とすれば\(\min\{1,d(x,y)\}=1<\epsilon\)となり矛盾.したがって\(1>d(x,y)\)である.このとき,\(\min\{1,d(x,y)\}=d(x,y)<\epsilon\)

\(\epsilon \geq 1\)のとき:
\(d^{\prime\prime}(x,y):=\min\{1,d(x,y)\}<\delta^{\prime}(<1)\).\(1 \leq d(x,y)\)とすれば\(\min\{1,d(x,y)\}=1<\delta^{\prime}<1\)となり矛盾.したがって\(1>d(x,y)\)である.このとき\(\min\{1,d(x,y)\}=d(x,y)<\delta^{\prime}<1\leq \epsilon\)より\(d(x,y)<\epsilon\)

証明終

多分簡単な問題だと思うんですけど任意に与えられた正数\(\epsilon\)をそのままで\(\delta\)探しして結構時間がかかってしまった…

これ記法や表現を適当に変えれば高校生向けの論理の問題に出来る気がします。

2次方程式が異符号の解をもつための条件

チャート式なんかによくみる解法

\(2\)次方程式\(f(x)=0\)が異なる\(2\)つの正の解をもつ\(~\Longleftrightarrow D>0,\alpha+\beta >0,\alpha\beta > 0\)
\(2\)次方程式\(f(x)=0\)が異なる\(2\)つの負の解をもつ\(~\Longleftrightarrow D>0,\alpha+\beta <0,\alpha\beta < 0\)
\(2\)次方程式\(f(x)=0\)が異符号の解をもつ\(~\Longleftrightarrow \alpha\beta < 0 \)

これを見てふと思う。最後のだけなんで\(D>0\)がないの?と。補足をよく見ると「このとき,\(D>0\)は成り立っている」と小さく書いてある。ここ,ちょっと疑問をもちつつも「まあそういうもんなんだろ~」程度のゆるい理解で済ませているひとも少なくないと思います。でも,ここをちゃんと確認しないまま結果だけ使うというのは,理由を納得しないまま覚えるということで,数学としてはその姿勢はちょっと不安です。

証明してみます。以下,\(\alpha,\beta\)を\(2\)次方程式\(f(x)=0\)の解とします。

証明

\(2\)次方程式\(f(x)=0\)が異符号の解をもつとする.
\begin{align*}
&~\text{\(2\)次不等式\(f(x)=0\)が異符号の解をもつ}\\
\Longleftrightarrow &~D>0 \land ((\alpha > 0 \land \beta < 0) \lor (\alpha < 0 \land \beta > 0))\\
\Longleftrightarrow &~D>0 \land \alpha\beta < 0\\
\Longrightarrow &~\alpha\beta < 0 \quad\text{※ 必要条件}
\end{align*}よって,\[\text{\(2\)次不等式\(f(x)=0\)が異符号の解をもつ}\Longrightarrow ~\alpha\beta < 0\]が成り立つ.逆に,\(\alpha\beta < 0\)とする.
\begin{align*}
\alpha\beta=\frac{c}{a}<0 \Longleftrightarrow~& ac<0\\ \Longleftrightarrow~& -4ac > 0\\
\Longrightarrow~& b^2-4ac > 0 \quad\text{※ 必要条件}\\
\Longleftrightarrow~& D > 0
\end{align*}ゆえに,
\begin{align*}
\alpha\beta < 0 \Longrightarrow~&D>0 \land \alpha\beta < 0\\
\Longleftrightarrow~&\text{\(2\)次不等式\(f(x)=0\)が異符号の解をもつ}
\end{align*}以上により,\[\text{\(2\)次不等式\(f(x)=0\)が異符号の解をもつ}\Longleftrightarrow~\alpha\beta < 0\]が示された.

証明終

判別式と解と係数の関係どーのこーのがこの分野のテーマだと思うんですが,そんなことより補足として小さく書かれたこっちの議論の方が大事だし面白いと個人的に思います^^;

そもそも,教科書や教科書準拠問題集はそもそもこの辺の論理にはあまり深入りしない傾向がある気がします。卑近な例ですが例えば「判別式は\(D\)じゃなくて\(\frac{D}{4}\)を使うと計算が楽だよ!」とか。これだって,「判別式はあくまで\(D\)であって,\(\frac{D}{4}\)だなんて勝手に\(\frac{1}{4}\)しちゃだめだろ」と思いませんでしたか…?僕は思ったなあ。実際楽なので正当性も確かめずに使ってましたが。まあともかくこれだって,なんのことはない,\begin{align*}D > 0 \Longleftrightarrow \frac{D}{4}>0\\
D = 0 \Longleftrightarrow \frac{D}{4}=0\\
D < 0 \Longleftrightarrow \frac{D}{4} <0\\ \end{align*}ということに過ぎず,したがって例えば\(\frac{D}{4}>0\)を変形して得られる結論は,\(D>0\)と同値であるわけです。だから\(\frac{D}{4}>0\)で考えてよい,という。

もっとも,細かいことは気にせずとりあえず使えるように(=問題が解けて,点数がもらえるように)なることを目指し,その後改めて,細部を振り返り精査していく…という勉強法は難しい内容を学びとるためのひとつの有効な姿勢であり,決して否定はできません。あまり細かいことを言うと敷居が高くなったり(※誤用の方),あるいは深入りしすぎて手段と目的が逆転してしまったりといいことばかりではありませんしね。どう導入するのか,というのは難しいところです。

★P254

\(\mathbb{R}\)の開区間\(J=(0,\infty)\)の各点\(x\)に対し,\(f(x)=\frac{1}{x}\)として写像\(f:J\rightarrow \mathbb{R}\)を定義する.この写像は,明らかに(\(\mathbb{R}\)の部分距離空間としての)\(J\)から\(\mathbb{R}\)への連続写像である.

 
証明

示したいことは
\begin{align*}
&\forall a \in J \forall \epsilon >0 \exists \delta >0[d(x,a)<\delta \Rightarrow d'(f(x),f(a))<\epsilon]\\ \Longleftrightarrow~&\forall a \in J \forall \epsilon >0 \exists \delta >0\left[|x-a|<\delta \Rightarrow \left|\frac{1}{x}-\frac{1}{a}\right|<\epsilon\right]\\
\end{align*}である.\[\left|\frac{1}{x}-\frac{1}{a}\right|=\left|\frac{a-x}{xa}\right|=\frac{|x-a|}{|x||a|}<\frac{\delta}{|x||a|}<\epsilon\]
となるような\(\delta\)の存在を示したい.まず,\(0 <\delta < a\)と\(\delta\)を定める.すると\(|x-a| < \delta \Leftrightarrow (0 <)a-\delta < x < a+\delta\)より\((0 < )|a-\delta| < |x|\).また\((0 <)|a|-|\delta|\leq |a-\delta|\)であるから,\[\left|\frac{1}{x}-\frac{1}{a}\right| <\frac{\delta}{|x||a|} < \frac{\delta}{|a-\delta||a|} < \frac{\delta}{(|a|-|\delta|)|a|}=\frac{\delta}{(|a|-\delta)|a|} \tag{1} \]したがって\(\frac{\delta}{(|a|-\delta)|a|}<\epsilon\)を満たすように\(\delta\)を定めればよい.\(
(2)~\frac{\delta}{(|a|-\delta)|a|} < \epsilon \Leftrightarrow~\delta < \frac{\epsilon |a^2|}{1+\epsilon|a|}\)であるが,\(\delta\)は\(\delta < a\)と定めたのであったから,改めて\(\delta\)を\[\delta < \min \left\{a,\frac{\epsilon |a^2|}{1+\epsilon|a|}\right\}\]を満たす\(\delta\)として定めればよい.実際,こうして定まる\(\delta\)を\(\delta^{\prime}\)とおけば,\(\delta^{\prime} < a,~\delta^{\prime} < \frac{\epsilon |a^2|}{1+\epsilon|a|}\)が成り立つので,上の不等式\((1),(2)\)(の\(\delta\)を\(\delta^{\prime}\)に変えたもの)が成り立ち,その\(2\)式から\(\left|\frac{1}{x}-\frac{1}{a}\right| < \epsilon\)が得られる.

証明終

★P249

\(d(x,A)=0\)であることは,定義によって,いかなる正数\(\epsilon\)を与えた場合にも,\(d(x,y)<\epsilon\)となる\(y\in A\)が存在すること(中略)を意味する.

 
えっなんで?

証明

\(\{d(x,y)|y \in A\}=M\)とおく.
\begin{align*}
&~d(x,A)=0\\
\Longleftrightarrow &~\inf\{d(x,y)|y \in A\}=0\\
\Longleftrightarrow &~\inf M=0\\
\Longleftrightarrow &~\begin{cases}\forall c \in M [0\leq c] \quad\text{※ 恒真命題}\\ \forall c \in M [c^{\prime} \leq c]\Rightarrow c^{\prime}\leq 0\end{cases}\\
\Longleftrightarrow &~\forall c \in M [c^{\prime} \leq c]\Rightarrow c^{\prime}\leq 0\\
\Longleftrightarrow &~\forall c^{\prime}\in \mathbb{R}\left[\forall c \in M [c^{\prime} \leq c]\rightarrow c^{\prime}\leq 0\right]\\
\Longleftrightarrow &~\forall c^{\prime}\in \mathbb{R}\left[\overline{\forall c \in M [c^{\prime} \leq c]} \lor c^{\prime}\leq 0\right]\\
\Longleftrightarrow &~\forall c^{\prime}\in \mathbb{R}\left[\exists c \in M [c^{\prime} > c] \lor c^{\prime}\leq 0\right]\\
\Longleftrightarrow &~\forall c^{\prime}\in (-\infty,0]\cup(0,\infty)\left[\exists c \in M [c^{\prime} > c] \lor c^{\prime}\leq 0\right]\\
\Longleftrightarrow &~c^{\prime}\in (-\infty,0]\cup(0,\infty) \Rightarrow (\exists c \in M [c^{\prime} > c] \lor c^{\prime}\leq 0)\\
\Longleftrightarrow &~c^{\prime}\in (-\infty,0]\lor c^{\prime}\in(0,\infty)\Rightarrow (\exists c \in M [c^{\prime} > c] \lor c^{\prime}\leq 0)\\
\Longleftrightarrow &~\begin{cases}c^{\prime}\in (-\infty,0]\Rightarrow (\exists c \in M [c^{\prime} > c] \lor c^{\prime}\leq 0) \quad \text{※ 恒真命題}\\ c^{\prime}\in(0,\infty) \Rightarrow (\exists c \in M [c^{\prime} > c] \lor c^{\prime}\leq 0)\end{cases}\\
\Longleftrightarrow &~c^{\prime}\in(0,\infty) \Rightarrow (\exists c \in M [c^{\prime} > c] \lor c^{\prime}\leq 0)\\
\Longleftrightarrow &~(c^{\prime}\in(0,\infty) \Rightarrow \exists c \in M [c^{\prime} > c]) \lor (c^{\prime}\in(0,\infty) \Rightarrow c^{\prime}\leq 0\quad\text{※ 矛盾命題})\\
\Longleftrightarrow &~c^{\prime}\in(0,\infty) \Rightarrow \exists c \in M [c^{\prime} > c]\\
\Longleftrightarrow &~\forall c^{\prime}\in(0,\infty)\exists c \in M [c^{\prime} > c]\\
\Longleftrightarrow &~\forall c^{\prime}\in(0,\infty)\exists c \in \{d(x,y)|y \in A\} [c^{\prime} > c]\\
\Longleftrightarrow &~\forall c^{\prime}\in(0,\infty)\exists y \in A [c^{\prime} > d(x,y)]\\
\Longleftrightarrow &~\forall \epsilon >0 \exists y \in A [d(x,y) < \epsilon]
\end{align*}

証明終

英語学習

英語を勉強しています。もちろんこれが初めての英語学習ではなく,遡ればDUO3.0で英文ごと英単語を覚え,富田一彦先生や薬袋善朗先生の本で文法を学んできました。文法は数学と一緒で一度理解してしまうとなかなか忘れない。実際,適当な文を読んでみても文の構造を判断するのに大きく困ることはほぼない(=読める)のでひとまず安心。では単語は…?というとこれもなかなか忘れていない!10代の若いときにがっつり記憶しておくってほんと大事!…とはいえその単語力もせいぜい大学受験レベルなので,リハビリを兼ねつつももっと上の語彙力を身に付けたいと思い,教材に選んだのがZ会の単語帳『Core 1900』。

まあ勉強,とは言っても,進度は一日150ワードくらいの文章を一日一つ,気分次第で二つというゆるいペース。ゆるくないとほんと続かないので!(その代わり毎日欠かさず)。でも,そのゆるさのおかげで難なく一周終わり(5/5時点)。ゆるい勉強ってやっぱいい。

今から2週目に入りつつ,同時進行で同じくZ会の『Opinion 1200』を進めようとおもいます。英文の構造を調べたりそれを大きな声で音読するのは数学の息抜きとしてもいい感じです。