◆値域の問題

\(4x^2-8xy+10y^2=1\)のとき,\(x^2+y^2\)の最大値と最小値を求めよ.

\(x^2+y^2\)がとりうる値の範囲を\(\mathcal{R}\)とおく.
\[
\begin{align*}
&k \in \mathcal{R}\\
\Longleftrightarrow~&\exists x \exists y \begin{cases} x^2+y^2=k \\ 4x^2-8xy+10y^2=1\end{cases}\\
\Longleftrightarrow~&\exists x \exists y \begin{cases} x^2+y^2=k \\ 4x^2-8xy+10y^2=1\end{cases} \land (k=0 \lor k \neq 0)\\
\Longleftrightarrow~&\exists x \exists y \left[\begin{cases} x^2+y^2=k \\ 4x^2-8xy+10y^2=1 \\ k=0 \end{cases} \lor \begin{cases} x^2+y^2=k \\ 4x^2-8xy+10y^2=1 \\ k\neq 0 \end{cases}\right]\\
\Longleftrightarrow~&\exists x \exists y \left[\begin{cases} x=y=0 \\ 4x^2-8xy+10y^2=1 \\ k=0 \end{cases} \lor \begin{cases} x^2+y^2=k \\ 4kx^2-8kxy+10ky^2=k \\ k\neq 0 \end{cases}\right]\\
\Longleftrightarrow~&\exists x \exists y \begin{cases} x^2+y^2=k \\ (4k-1)x^2-8kxy+(10k-1)y^2=0 \\ k \neq 0\end{cases}\\
\Longleftrightarrow~&\exists x \exists y \begin{cases} x^2+y^2=k \\ (4k-1)x^2-8kxy+(10k-1)y^2=0 \\ k \neq 0\end{cases} \land (y=0 \lor y \neq 0)\\
\Longleftrightarrow~&\exists x \exists y \left[\begin{cases} x^2+y^2=k \\ (4k-1)x^2-8kxy+(10k-1)y^2=0 \\ k \neq 0 \\ y=0 \end{cases} \right.\\
&\left.\lor \begin{cases} x^2+y^2=k \\ (4k-1)x^2-8kxy+(10k-1)y^2=0 \\ k \neq 0 \\ y\neq 0 \end{cases}\right]\\
\Longleftrightarrow~&\exists x \exists y \left[\begin{cases} x^2=k \\ (4k-1)x^2=0 \\ k \neq 0\\ y=0 \end{cases} \lor \begin{cases} x^2+y^2=k \\ (4k-1)x^2-8kxy+(10k-1)y^2=0 \\ k \neq 0 \\ y\neq 0 \end{cases}\right]\\
\Longleftrightarrow~&\exists x \exists y \left[\begin{cases} x^2=k \\ (4k-1)k=0 \\ k \neq 0\\ y=0 \end{cases} \lor \begin{cases} x^2+y^2=k \\ (4k-1)\left(\frac{x}{y}\right)^2-8k\frac{x}{y}+(10k-1)=0 \\ k \neq 0 \\ y\neq 0 \end{cases}\right]\\
\Longleftrightarrow~&\exists x \exists y \left[\begin{cases} x^2=\frac{1}{4} \\ k=\frac{1}{4} \\ k \neq 0\\ y=0 \end{cases} \lor \begin{cases} x^2+y^2=k \\ (4k-1)\left(\frac{x}{y}\right)^2-8k\frac{x}{y}+(10k-1)=0 \\ k \neq 0 \\ y\neq 0 \end{cases}\right]\\
\Longleftrightarrow~&k=\frac{1}{4} \lor \exists x \exists y \begin{cases} x^2=\frac{1}{4} \\ y=0 \end{cases} \lor \exists x \exists y\begin{cases} x^2+y^2=k \\ (4k-1)\left(\frac{x}{y}\right)^2-8k\frac{x}{y}+(10k-1)=0 \\ k \neq 0 \land y\neq 0 \end{cases}\\
\Longleftrightarrow~&k=\frac{1}{4} \lor \exists x \exists y\begin{cases} x^2+y^2=k \\ (4k-1)\left(\frac{x}{y}\right)^2-8k\frac{x}{y}+(10k-1)=0 \\ k \neq 0 \land y\neq 0 \end{cases}\\
\Longleftrightarrow~&k=\frac{1}{4} \lor \exists x \exists y \left[\begin{cases} x^2+y^2=k \\ (4k-1)\left(\frac{x}{y}\right)^2-8k\frac{x}{y}+(10k-1)=0 \\ k \neq 0 \land y\neq 0 \end{cases} \land \exists t \left[\frac{x}{y}=t\right]\right]\\
\Longleftrightarrow~&k=\frac{1}{4} \lor \exists x \exists y \exists t \begin{cases} x^2+y^2=k \\ (4k-1)\left(\frac{x}{y}\right)^2-8k\frac{x}{y}+(10k-1)=0 \\ k \neq 0 \land y\neq 0 \\ \frac{x}{y}=t\end{cases}\\
\Longleftrightarrow~&k=\frac{1}{4} \lor \exists x \exists y \exists t \begin{cases} x^2+y^2=k \\ (4k-1)t^2-8kt+(10k-1)=0 \\ k \neq 0 \land y\neq 0 \\ \frac{x}{y}=t\end{cases}\\
\Longleftrightarrow~&k=\frac{1}{4} \lor \exists x \exists y \begin{cases} x^2+y^2=k \\ k \neq 0 \land y\neq 0 \\ \exists t \left[ (4k-1)t^2-8kt+(10k-1)=0\land \frac{x}{y}=t \right]\end{cases}\tag{\(\ast\)}\
\end{align*}
\]
ここで,\(\exists x [p(x) \land q(x)] \Longrightarrow \exists x p(x) \land \exists x q(x)\)であることに注意して,(つづき