文字は死んで変域残す

\(x,y\)が実数で,\(2x^2+3xy+2y^2=1\)を満たすとき,\(x+y+xy\)の最大値と最小値を求めよ.

という定番の問題についてみてみます.これは\(x+y=u,xy=v\)とおいたあと,「\(x,y\)が実数」という条件を\(u,v\)に反映させるのがポイントなのでした.すなわち,\(t^2-ut+v=0\)の判別式を\(\geq 0\)とすることにより
\[u^2-4v \geq 0\]
この不等式に注意しながら\(x+y+xy\)の最大値・最小値を調べる,という流れが定石でした(虎は死んで皮を残す,人は死んで名を残す,文字は死んで変域を残す…).この,\(u^2-4v \geq 0\)を得る流れは論理的にはどうなっているのか,調べてみます.

解答
\begin{align*}
&\text{\(x+y+xy\)が\(k\)という値をとる}\\
\Longleftrightarrow~&\exists x \exists y[x+y+xy=k \land 2x^2+3xy+2y^2=1]\\
\Longleftrightarrow~&\exists x \exists y \left[x+y+xy=k \land 2x^2+3xy+2y^2=1 \land \exists u \exists v \begin{cases}x+y=u\\xy=v\end{cases}\right]\\
\Longleftrightarrow~&\exists x \exists y \exists u \exists v\left[x+y+xy=k \land 2(x+y)^2-xy=1 \land \begin{cases}x+y=u\\xy=v\end{cases}\right]\\
\Longleftrightarrow~&\exists x \exists y \exists u \exists v\left[u+v=k \land 2u^2-v=1 \land \begin{cases}x+y=u\\xy=v\end{cases}\right]\\
\Longleftrightarrow~&\exists u \exists v\left[u+v=k \land 2u^2-v=1 \land \exists x \exists y \begin{cases}x+y=u\\xy=v\end{cases}\right]\tag{\(\ast\)}
\end{align*}
ここで
\begin{align*}
&\exists x \exists y \begin{cases}x+y=u\\xy=v\end{cases}\\
\Longleftrightarrow~&\exists x \exists y \begin{cases}x+y=u\\ \frac{1}{4}((x+y)^2-(x-y)^2)=v\end{cases}\\
\Longleftrightarrow~&\exists x \exists y \begin{cases}x+y=u \\ (x-y)^2=u^2-4v\end{cases}\\
\Longleftrightarrow~&\exists x \exists y \begin{cases}x+y=u \\ |x-y|=\sqrt{u^2-4v}\end{cases}\\
\Longleftrightarrow~&\exists x \exists y \begin{cases}y=u-x \\ (x-y=\sqrt{u^2-4v} \land x-y \geq 0 ) \lor (y-x=\sqrt{u^2-4v} \land x-y < 0 )\end{cases}\\ \Longleftrightarrow~&\exists x \left[\left(x=\frac{1}{2}\left(u+\sqrt{u^2-4v}\right) \land x \geq \frac{u}{2} \right) \lor \left(x=\frac{1}{2}\left(u-\sqrt{u^2-4v}\right) \land x < \frac{u}{2} \right)\right]\\ \Longleftrightarrow~&\frac{1}{2}\left(u+\sqrt{u^2-4v}\right) \geq \frac{u}{2} \lor \frac{1}{2}\left(u-\sqrt{u^2-4v} \right) < \frac{u}{2} \\ \Longleftrightarrow~&\sqrt{u^2-4v} \geq 0 \lor \sqrt{u^2-4v} < 0\\ \Longleftrightarrow~&\sqrt{u^2-4v} \geq 0\\ \Longleftrightarrow~&u^2-4v \geq 0\\ \end{align*} であるから
\begin{align*}
(\ast)\Longleftrightarrow~&\exists u \exists v\left[u+v=k \land v=2u^2-1 \land u^2-4v \geq 0\right]\\
\Longleftrightarrow~&\exists u \left[u+(2u^2-1)=k \land u^2-4(2u^2-1) \geq 0\right]\\
\Longleftrightarrow~&\exists u \left[k = 2u^2+u-1 \land -\frac{2}{\sqrt{7}} \leq u \leq \frac{2}{\sqrt{7}}\right]\\
\Longleftrightarrow~&-\frac{9}{8} \leq u \leq \frac{1}{7}+\frac{2}{\sqrt{7}}
\end{align*}
ゆえに,最大値\(\displaystyle \frac{1}{7}+\frac{2}{\sqrt{7}}\),最小値\(\displaystyle -\frac{9}{8}\).

\(\ast\)    \(\ast\)    \(\ast\)

ここで,~であるから」までがいわゆる「実数の存在条件」の処理です.前回の「\(m^2<\frac{1}{12}\)を満たす実数の存在条件は~」と同じ考え方で導出してみました.

© 2022 佐々木数学塾, All rights reserved.