★解析学演習(はさみうちの原理)

\(x_n \leq a_n \leq y_n\)であって,\(\displaystyle \lim_{n \rightarrow \infty}x_n=\lim_{n \rightarrow \infty}y_n=a\)であれば,\(\displaystyle \lim_{n \rightarrow \infty}a_n=a\)であることを証明せよ.(はさみうちの原理)
(田島一郎 解析入門 P14問7)

(証明)

仮定より,
\[\forall \epsilon >0 \exists N_1\big[n>N_1 \Longrightarrow |x_n-a|<\epsilon \big]\] \[\forall \epsilon >0 \exists N_2\big[n>N_2 \Longrightarrow |y_n-a|<\epsilon \big]\] であるから,\(N=max\{N_1,~N_2\}\)ととれば,\(n>N\)のとき,
\[|x_n-a|<\epsilon,\quad|y_n-a|<\epsilon\]
すなわち
\[a-\epsilon < x_n < a+\epsilon,\quad a-\epsilon < y_n < a+\epsilon\]
これと仮定\(x_n \leq a_n \leq y_n\)から
\[a-\epsilon < x_n \leq a_n \leq y_n < a+\epsilon\]
より
\[a-\epsilon < a_n < a+\epsilon \Longleftrightarrow |a_n-a|<\epsilon\] が言える.以上まとめると, \[\forall \epsilon >0 \exists N\big[n>N \Longrightarrow |x_n-a|<\epsilon \big]\]
すなわち
\[\lim_{n \rightarrow \infty}a_n=a\]
となる.(証明終)

© 2024 佐々木数学塾, All rights reserved.