中学で学ぶルート計算について一言.
例えばこんな計算をしなければならないとしましょう.\[\sqrt{27\times 45}\]ルート計算を学び始めだと,このように計算すると思います.まず\(27\times 45\)を「ひっ算で」計算して,\[\sqrt{27\times 45}=\sqrt{1215}\]次に\(1215\)をまた「ひっ算で」素因数分解して,\[\sqrt{3\times3\times3\times3\times3\times5}\]よって,\[3\times3\sqrt{15}=9\sqrt{15}\]となります.さて,ここで行った計算を振り返ってみましょう.\[\text{ルートの中身を計算}\rightarrow\text{素因数分解}\rightarrow\text{2人いる因数を外に出す}\]つまり差し当たっての目標は\[\text{2人いる因数を探すこと}\]です.これが目的です.であるならば,最初からこれを行えばいいのではないでしょうか?なぜなら,最初のルートの中身が\(27\times 45\)という,「因数が見やすい」形なのですから.すると,ひっ算をするまでもなく,
\[
\begin{align*}
&27=9\times3\\
&45=5\times9
\end{align*}
\]
すなわち,\[\text{27には9が1人,45にも9が1人いる}\]ことが見えます.結局,\[\text{27}\times\text{45には}\text{9が2人いる}\]ことが分かります.したがって,ルートの外は9となり,5と3がルートの中に居残ることになります.よって答えは,暗算で\[9\sqrt{15}\]とすぐに答えられます.
最初に示した計算方法は,例えるならば,「目的はバラバラにすることなのに,そのバラバラのものを一度寄せ集めて一つにして,またまたバラバラにする」という,いわば二度手間をしているわけです.
・・・以上,このルートの例は単純な例ですが,このように計算する生徒が意外に少なくないように思います.
一般に,計算とは面倒なものです.そのような面倒な計算に出会ったとき,\[\text{面倒}\rightarrow\text{だけど我慢して行う}\]という姿勢は,「努力している」という意味では褒められるべきかも知れませんが,数学的にはあまり実り多き努力とは言えないと個人的に思います.それよりも,\[\text{面倒}\rightarrow\text{それを避ける何かうまい方法はないか}\]と考える癖をつけるのことの方が数学的成長の上で大切だと思います.