フェルマーの小定理

\(p\)を素数とする.整数\(a\)が\(a \not\equiv 0 \pmod p\)をみたすならば,\[a^{p-1} \equiv 1 \pmod p\]が成り立つ.

証明

\[1a,~2a,~3a,~\cdots,(p-1)a\]を考える.これらを\(p\)で割った余りはすべて異なることを以下に示す.\(p\)で割って余りが等しくなるような\(2\)数が存在すると仮定し,それらを\(ia,ja~(1 \leq i,j \leq p-1,~i\neq j )\)とおけば\[ia\equiv ja \pmod p \Longleftrightarrow (i-j)a\equiv 0 \pmod p\]が得られるが,\(a \not\equiv 0 \pmod p\)により\(i-j \equiv 0 \pmod p\)でなくてはならない.しかし,\(1 \leq i,j \leq p-1\)であったから,\(i-j\)は\(p-1\)以下であり,矛盾する.

したがって\(1a,~2a,~3a,~\cdots,(p-1)a\)を\(p\)で割った余りはすべて異なる.また\(a\not \equiv 0 \pmod p\)よりこれらは\(p\)では割り切れない(\(p\)で割っても余りが\(0\)にはならない)から,\(1a,~2a,~3a,~\cdots,(p-1)a\)を\(p\)で割ると余りとして\(1,2,\cdots,p-1\)がそれぞれ\(1\)回ずつ現れることになる.これを\[1a\equiv n_{1}~,2a\equiv n_{2}~,~\cdots~,(p-1)a\equiv n_{p-1}\]と表すことにする(ただし\((n_{1},~n_{2},~\cdots~,n_{p-1})\)は\(1,2,~\cdots~,p-1\)の適当な順列).辺々掛けることで
\begin{align*}
&1\cdot 2 \cdot \cdots \cdot (p-1) a^{p-1}\equiv n_{1}n_{2}\cdots n_{p-1} \pmod p \\
\Longleftrightarrow ~&(p-1)! a^{p-1}\equiv (p-1)! \pmod p
\end{align*}ここで,\(\gcd(p,(p-1)!)=1\)であるから(実際,\(p\)と\((p-1)!\)に共通な素因数が存在すると仮定すると,\(p\)が素数であることからその共通の素因数は\(p\)であるが,\(1,2,\cdots,p-1\)はいずれも\(p\)では割り切れず,矛盾する),両辺を\((p-1)!\)で割ることができて\[a^{p-1} \equiv 1 \pmod p\]が得られる.

証明終

「分からない」の大切さ

\(11^{10}\)を\(9\)で割った余りを求めよ.

合同式の問題でよく見る問題です。

解答

\begin{align*}
11^{10}&\equiv 2^{10}\\
&\equiv 2\cdot 2^9\\
&\equiv 2\cdot 8^3\\
&\equiv 2\cdot (-1)^3\\
&\equiv -2\\
&\equiv 7 \pmod 9
\end{align*}よって\[11^{10}\equiv 7 \pmod 9\]したがって求める余りは\(7\)

解答終

授業でこの解説をしたところ「\(\equiv\)を\(=\)の同じような使い方をしてよいのかどうかがいまいちしっくりこない」という感想が。そう言われてみれば確かにこの解説はちょっと乱暴過ぎます(理解に必要な準備が足らない)。以下,この解答の理解のために知識を追加します。

まず一つ目。\[a_1 \equiv a_2 \equiv a_3 \equiv \cdots \equiv a_n \pmod p\]を\[a_1 \equiv a_2 \pmod p,~a_2 \equiv a_3\pmod p,~\cdots~,a_{n-1} \equiv a_n \pmod p\]を意味するものと規約します。これはただの記法なので問題なし。

二つ目。\[a_1 \equiv a_2 \equiv a_3 \equiv \cdots \equiv a_n \pmod p~\text{ならば}~a_1 \equiv a_n \pmod p\]であることを確認します。これは結局,次の性質(推移律)があるのか?という問題に帰着します。

\[a\equiv b\pmod p \land b \equiv c \pmod p \Longrightarrow a\equiv c \pmod p\]

証明

仮定により\(a-b=pk,b-c=pk^{\prime}\Longleftrightarrow a=b+pk,~b=c+pk^{\prime}\).このとき,
\begin{align*}
a-c&=b+pk-c\\
&=c+pk^{\prime}+pk-c\\
&=p(k^{\prime}+k)
\end{align*}よって\[a\equiv c\pmod p\]

証明終

以上により,上の解答の式は
\begin{align*}
&11^{10}\equiv 2^{11}\pmod 9\\
&2^{11}\equiv 2\cdot 2^9\pmod 9\\
&2\cdot2^9\equiv 2\cdot 8^3\pmod 9\\
&2\cdot 8^3\equiv 2\cdot (-1)^3\pmod 9\\
&2\cdot (-1)^3\equiv -2\pmod 9\\
&-2\equiv 7 \pmod 9
\end{align*}を意味し,上で示した性質(推移律)を繰り返し適用することにより\(11^{10}\equiv 7 \pmod 9\)という結論が得られることになります(つまりこの解答の略記が上の解答)。

「わからない」「しっくりこない」という素直な感覚は,理解を深めるひとつの起点であると改めて思ます。

 

合同式の種々の公式

\(a\equiv b\pmod p,~c\equiv d\pmod p\)のとき,\[a\pm c \equiv b \pm d\pmod p,~ac \equiv bd\pmod p,~a^n \equiv b^n\pmod p\]が成り立つことは教科書や問題集等でよく証明されているので,ここではあまり紹介されないもののよく使う次の式を証明してみます。前半は片方のみに法の整数倍を加えるという\(=\)の世界では決して許されなかった計算が許されるという性質,後半は逆に\(\equiv\)の世界では禁じ手であった「両辺を割る」という操作ががある仮定のもとに限り許されるという面白い性質です。

\(a \equiv b\pmod p\)のとき,\[a\equiv b+pk \pmod p~(k\in \mathbb{Z})\]

証明

仮定により\(a-b=pk\)であるから
\begin{align*}
a-(b+kp)&=pk+b-(b+kp)\\
&=pk+kp=p(k+1)
\end{align*}よって\[a\equiv b+pk \pmod p~(k\in \mathbb{Z})\]

証明終

\(\gcd(c,p)=1\)(\(c\)と\(p\)が互いに素)のとき,
\[ac \equiv bc \pmod p\Longrightarrow a \equiv b \pmod p\]

証明

仮定により\[ac-bc=pk \Longleftrightarrow (a-b)c=pk\]右辺が\(p\)の倍数であるから左辺も\(p\)の倍数.ここで,\(c\)が\(p\)の倍数(\(c=pk^{\prime}\))であると仮定すると,\(c(=pk^{\prime})\)と\(p\)が互いに素であることに反する(合同式の定義により\(p\)は\(2\)以上のの整数であることに注意).したがって\(a-b\)が\(p\)の倍数,すなわち\[a\equiv b \pmod p\]
証明終

不定方程式

次の不定方程式の整数解を求めよ.\[(1)~7x-17y=1 \qquad (2)~52x+539y=19 \]

教科書と同じ解法はつまらないので,合同式を用いて解いてみます。

解答

\((1)\)
\[7x-17y\equiv1\pmod{7}\]
左辺に\(7(-x)\)を加えて(ア)
\[-17y\equiv1\pmod{7}\]
左辺に\(14y\)を加えて
\[-3y\equiv1\pmod{7}\]
両辺を\(2\)倍して(イ)
\[-6y\equiv2\pmod{7}\]
左辺に\(7y\)を加えて
\[y\equiv2\pmod{7}\]
よって\[y=7k+2~(k\in\mathbb{Z})\]
もとの式にこれを代入して
\[x=17k+5~(k\in\mathbb{Z})\]

\((2)\)
\[52x+539y\equiv19\pmod{52}\]
左辺に\(52(-x)\)を加えて
\[539y\equiv19\pmod{52}\]
左辺に\(52(-10y)\)を加えて
\[19y\equiv19\pmod{52}\]
\(19\)と\(52\)は互いに素であるから,両辺を\(19\)で割ることができて(ウ)
\[y\equiv1\pmod{52}\]
よって\[y=52k+1~(k\in\mathbb{Z})\]
もとの式にこれを代入して
\[x=-539k-10~(k\in\mathbb{Z})\]

解答終

このように合同式を利用すればゴチャゴチャ計算しなくとも簡潔に記述できます。
ただし(ア)(イ)(ウ)の操作は証明が必要です。

倍数の判定法

\(N\)を自然数とする.

\(N\)の下\(2\)桁が\(4\)の倍数\(~\Longleftrightarrow~\)\(N\)が\(4\)の倍数

証明

\(N\)を\(i\)桁目が\(a_{i-1}~(i=1,\cdots,n,a_{i-1}\in\mathbb{N})\)であるような自然数とする.
\begin{align*}
N&=a_0+a_1\times 10^{1}+a_2\times 10^{2}+\cdots+a_{n-1}\times 10^{n-1}\\
&=a_0+a_1\times 10^{1}+10^2(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})\\
&=a_0+a_1\times 10^{1}+4 \times 25(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})\tag{\(\ast\)}
\end{align*}

\(\Rightarrow\)について:
\(N\)の下\(2\)桁が\(4\)の倍数であるとする.\((\ast)\)により,
\[N=a_0+a_1\times 10^{1}+4 \times 25(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})\]仮定により,\(N\)の下\(2\)桁が\(4\)の倍数,すなわち\(a_0+a_1\times 10^{1}\)が\(4\)の倍数であるから\(N\)は\(4\)の倍数である.

\(\Leftarrow\)について:
\(N\)が\(4\)の倍数であるとする.\((\ast)\)により,
\begin{align*}
&N=a_0+a_1\times 10^{1}+4 \times 25(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})\\
\Longleftrightarrow~&a_0+a_1\times 10^{1} = N – 4 \times 25(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})
\end{align*}仮定により,\(N\)は\(4\)の倍数であるから\(a_0+a_1\times 10^{1}\)すなわち\(N\)の下\(2\)桁は\(4\)の倍数である.

証明終

教科書の記述だと「\(4\)の倍数…下\(2\)桁が\(4\)の倍数である」というような記述をしており,必要条件なのか十分条件なのか曖昧なのでここにまとめておきます。他の倍数の判定もまったく同様の方針で証明できます。ちなみに合同式を使うともっと簡潔に記述できます。

「存在することを示せ」と言われたら 

(数学A,数学B)

「ツチノコの存在を証明しろ」と言われたら,どうすればいいか。
…それは簡単,ツチノコを捕まえて連れてくればOK!

ここで,数学Aの「整数の性質」で登場した「整数の割り算」について見てみます。

一般に,次のことが成り立つ。

整数\(a\)と正の整数\(b\)について\[a=qb+r,~0\leq r < b\]となる整数\(q,r\)はただ\(1\)通りに定まる。

『高等学校 数学A』数研出版

 
「定まる」とは要は「存在する」ということですが,いずれにせよ初めて学んだときは感覚的に当たり前すぎて疑問にすら思わなかったと思います。しかし,いざこれを証明しろと言われたらどうしたらいいでしょう…?

ずばり,実際にもってこよう!(以下では簡単のために\(a\geq 0\)とし,また一意性の部分はカットします)

\(a,b\)を\(a \geq 0,b>0\)を満たす整数とする.このとき,
\[a=qb+r,~0\leq r < b\tag{\(\ast\)}\]を満たす整数\(q,r\)が存在することを示せ.

証明

\(b(>0)\)を固定して,任意の\(a(\geq 0)\)について主張が成り立つことが示せればよい.

\(a < b\)であるとき:
\(q=0,r=a\)とすればよい.

\((0 <)b \leq a\)であるとき:
数学的帰納法で示す.\(a\)より小さい非負の整数で主張が成り立つとする.\(b>0\)より\(b \leq a \Leftrightarrow 0 \leq a-b (< a)\)であるから,\(a-b\)は\(a\)より小さい非負の整数である.したがって仮定により,\begin{align*}
&\exists q^{\prime},r^{\prime}\in \mathbb{Z}[a-b = q^{\prime}b+r^{\prime},0 \leq r^{\prime} \leq b]\\
\Longleftrightarrow~&\exists q^{\prime},r^{\prime}\in \mathbb{Z}[a = (q^{\prime}+1)b+r^{\prime},0 \leq r^{\prime} \leq b]
\end{align*}よって\((\ast)\)を満たす\(q,r\)として\(q=q^{\prime}+1,~r=r^{\prime}\)ととればよい.
これで,\(a\)より小さい非負の整数で主張が成り立てば,\(a\)でも主張が成り立つことが分かった.
\(a=0\)のときは,\(q=0,r=0\)とすればよい.

以上により任意の\(a(\geq 0)\)に対して\((\ast)\)を満たす\(q,r \in \mathbb{Z}\)が存在することが示せた.

証明終

現物もってくれば文句ないだろっていう。

こんなところで数学Bで学んだ(学ぶ)数学的帰納法が登場するのも面白いですね。しかも直前の番号のみを仮定する教科書の定番タイプではなく,直前以前の番号すべてを仮定するタイプの帰納法です。

パズルみたいな学校数学もまあまあ面白いけど,個人的にはこういう緻密な調査の方がすきだなあ。点数にならないけど。

 

任意の

とある問題の証明を読んでいたら,こんな一文に出会いました.記号の意味はさておき,\(\delta(A),\delta(\overline{A}),\epsilon\)はいずれも実数です.

(中略) \(\delta(\overline{A}) \leq \delta(A) + \epsilon\).\(\epsilon\)は任意の正数だから,\(\delta(\overline{A}) \leq \delta(A)\).

 

(ここで理解が詰まる)

「任意」と言われたから,どんな正数でもOKですが,でかい数をもってきても結論の不等式が得られるとは思えませんから,めちゃくちゃ小さい数を持ってくることにします.\(\delta(A)\)に加えられる数\(\epsilon\)をめちゃくちゃ小さくしたとしてもやっぱり\(\delta(\overline{A})\)よりも\(\delta(A)\)の方が大きい…,ということは\(\delta(A)\)の方が大きいと言える…のか…??感覚的には納得できるような気もしないでもないですが,でも小さいとはいえ正数を加えられている以上それを除いてもやはり\(\delta(\overline{A})\)以上だ,なんて言えるのだろうか,とも感じられ,釈然としません.

議論に関係のない文字がうるさいので,ちょっと簡略化して書き直します.

\(a,b \in \mathbb{R}\)とする.
任意の正数\(\epsilon\)に対して\(a \leq b + \epsilon\)が成り立つならば,\(a \leq b\)が成り立つ.

こう書くとちょっと高校数学の証明問題ぽいですね.実際,いちおう数学Aの集合と論理を終えた高1生なら理解できる(証明できる)と思います.調べてみましょう.

証明

背理法で示す.証明したいことは
\[\forall \epsilon >0 [a \leq b + \epsilon ]\Longrightarrow a \leq b\]
であるから,否定をとると
\begin{align*}
&\overline{\forall \epsilon >0 [a \leq b + \epsilon ]\Longrightarrow a \leq b}\\
\Longleftrightarrow~&\overline{\overline{\forall \epsilon >0 [a \leq b + \epsilon ]} \lor a \leq b}\\
\Longleftrightarrow~&\forall \epsilon >0 [a \leq b + \epsilon ] \land a > b
\end{align*}\(a>b\)だから,\(a-b > 0\).また,\(\forall \epsilon >0 [a \leq b + \epsilon ]\),つまり\(a \leq b + \epsilon\)が任意の\(\epsilon > 0\)について成り立つから,ここでは\(\epsilon=\frac{a-b}{2} >0\)ととることにする.すると,\[a \leq b +\frac{a-b}{2} \Longleftrightarrow a \leq b\]を得る.これは\(a>b\)であることに反する.

証明終

この証明,知識としてはほぼ高校数学の知識しか使ってない上にとてもシンプルな論証なので,教科書では無視しがちな「任意の」を重要性を確認させる問題としていいんじゃないかな,なんて思いました.「任意の」と言っているのだから,都合のよい\(\epsilon\)を代入したところがポイントです.

原因の確率

教科書では「研究」「発展」などに分類され,端っこの方に追いやれている話題です.授業でも扱わないことが多いので,無視して先に進む人も多いと思いますが,これは実はとても面白い話題です.今回はこの話題について触れてみます.

Aさんはがん検査を受けた.その結果は「要精密検査」であった.この検査は,実際にがんの人が要精密検査とされる確率が\(90\%\)で,実際にはがんではないのに要精密検査とされる確率が\(10\%\)であるような検査である.検診を受ける人の1000人に1人は実際にがんにかかっているとすると,Aさんが実際にがんである確率はいくらか.

Aさんを自分に置き換えて考えてみましょう.検査を受けたら「要精密検査」で,実際にがんの人が要精密検査とされる確率が\(90\%\)と言われたら,「ああ自分はがんなんだ…」と考え落ち込むのではないでしょうか.が,落ち着むのは尚早です.今置かれた状況をよく見ると「『要精密検査』という結果が与えられたときの,実際にがんである確率」ですから,これは条件付き確率です.では,実際に計算して自分ががんである確率を求めてみましょう!(注意:条件付き確率ベイズの定理についての知識が必要になります.未習の人はこれらの記事を先に読んでみてください.)条件付き確率の定義より,

\[P(\text{実際にがん}|\text{要精密検査})=\frac{P(\text{実際にがん}\cap\text{要精密検査})}{P(\text{要精密検査})}\]

まず,分子から求めてみます.確率の乗法定理より,
\[P(\text{実際にがん}\cap\text{要精密検査})=P(\text{実際にがん})P(\text{要精密検査}|\text{実際にがん})\]
です.問題文より,
\[P(\text{実際にがん})=\frac{1}{1000},\quad P(\text{要精密検査}|\text{実際にがん})=\frac{90}{100}\]
です.ですから分子は\[\frac{1}{1000}\times\frac{90}{100}\]となります.

次に分母.\(P(\text{要精密検査})\)つまり「『要精密検査』とされる確率」です.「『要精密検査』とされる」という状況には2通りあります.すなわち,

          • 「実際にがんで,『要精密検査』」
          • 「実際にはがんではないのに,『要精密検査』」

という2通りの場合です.それぞれ

          • \(P(\text{実際にがん}\cap \text{要精密検査})\)
          • \(P(\text{実際はがんではない}\cap \text{要精密検査})\)

と表されますから,結局分母は\[P(\text{実際にがん}\cap \text{要精密検査})+P(\text{実際はがんではない}\cap \text{要精密検査})\]と表されます(全確率の定理).さらに,確率の乗法定理より,この式は
\[P(\text{実際にがん})P(\text{要精密検査}|\text{実際にがん})+P(\text{実際はがんではない})P(\text{要精密検査}|\text{実際はがんではない})\]と表されます.前の項は前半で求めました.\(\frac{1}{1000}\times \frac{90}{100}\).後ろの項は,問題文より,
\[P(\text{実際はがんではない})=\frac{999}{1000},\quad P(\text{要精密検査}|\text{実際はがんではない})=\frac{10}{100}\]ですから\(\frac{999}{1000}\times\frac{10}{100}\).ですから分母は
\[\frac{1}{1000}\times \frac{90}{100}+\frac{999}{1000}\times\frac{10}{100}\]となります.したがって,求める確率\(P(\text{実際にがん}|\text{要精密検査})\)は,
\[
\begin{align*}
P(\text{実際にがん}|\text{要精密検査})&=\frac{\frac{1}{1000}\times\frac{90}{100}}{\frac{1}{1000}\times \frac{90}{100}+\frac{999}{1000}\times\frac{10}{100}}\\
&=\frac{1\times 90}{1\times 90 +999\times 10}\\
&=\frac{9}{9+999}\\
&=\frac{1}{112}\approx 0.00893
\end{align*}
\]となります.なんと,「要精密検査」と言われ実際にがんである確率はたったの\(0.00893\),つまり\(1\%\)にも満たない,ということです!

このように,確率は時として人間の直感を大きく裏切ります.しかし,論理によってはじき出された結果である以上,人間の感情としてどう感じようとそれは受け入れざるを得ない.そこが数学の面白さ・頼もしさのひとつだと思います.

全確率の定理

A君が友人とストリートファイターⅡ(スーファミ)で友人Bと対戦している.A君が勝つ確率は?

という問題があったとしましょう.こんな問題を見たらどう思いますか?(勝つか負けるか,2分の1だ!は間違いですよ~)当然,こう思うと思います「そらA君が誰使うかによるだろ」と.では,どんな場合があるでしょうか.リュウを使う場合,ケンを使う場合,ガイルを使う場合,春麗を使う場合….いろいろ考えられます.そして,ストⅡは2人同時に操作はできません(そのラウンドで1人のプレイヤーがリュウとケンと同時に操作し味方2人状態で戦うことはできません!).つまり同時に起こることはありませんから,これらの場合は互いに排反です.したがって,求める確率は
\[
\begin{align*}
P(\text{A君が勝つ})=&P(\text{A君が勝つ}\cap\text{リュウを使う})+P(\text{A君が勝つ}\cap\text{ケンを使う})\\
&+P(\text{A君が勝つ}\cap\text{エドモンド本田を使う})+P(\text{A君が勝つ}\cap\text{春麗を使う})\\
&+P(\text{A君が勝つ}\cap\text{ブランカを使う})+P(\text{A君が勝つ}\cap\text{ザンギエフを使う})\\
&+P(\text{A君が勝つ}\cap\text{ガイルを使う})+P(\text{A君が勝つ}\cap\text{ダルシムを使う})
\end{align*}
\]
「A君が勝つ」という事象を\(A\),「リュウを使う」という事象を\(B_1\),「ケンを使う」という事象を\(B_2\),「エドモンド本田を使う」という事象を\(B_3\),・・・,「ダルシムを使う」という事象を\(B_8\)とおくことにすれば,上の式は
\[
\begin{align*}
P(A)=&P(A\cap B_1)+P(A\cap B_2)+P(A\cap B_3)+P(A\cap B_4)\\
&+P(A\cap B_5)+P(A\cap B_6)+P(A\cap B_7)+P(A\cap B_8)\\
&=\displaystyle \sum^{8}_{i=1}P(A\cap B_i)
\end{align*}
\]すなわち\[P(A)=\displaystyle \sum^{8}_{i=1}P(A\cap B_i)\]と書けることがわかります.これを一般化すると,

全確率の定理\[P(A)=\displaystyle \sum^{\infty}_{i=1}P(A\cap B_i)\]

であると言えそうです.これを全確率の定理と呼びます.

ところで「ストリートファイター」ってゲーム自体今はどれくらい知名度あるんだろう?僕の時代は知らない人はいないくらいに流行っていました(スクリューパイルドライバーが出せたらまさにヒーロー).なので馴染みやすいかなと思って例に挙げましたが….調べると今はストリートファイター5まであるみたいですね.プレイアブルキャラは40人(!)らしいですから,この場合は\[P(A)=\displaystyle \sum^{40}_{i=1}P(A\cap B_i)\]ですね^^;

確率の乗法定理

条件付き確率の定義より,\[P(B|A)=\frac{P(B\cap A)}{P(A)}\]
両辺に\(P(A)\)を掛けることによって,\[P(A \cap B)=P(A)P(B|A)\]が得られます.(\(P(B \cap A)=P(A\cap B)\)としました)これを確率の乗法定理といいます.

確率の乗法定理(その1)\[P(A \cap B)=P(A)P(B|A)\]

日本語に翻訳すると「事象\(A\)と事象\(B\)が同時に起こる確率は,事象\(A\)の確率と,事象\(A\)の影響を受けた事象\(B\)の確率(条件付き確率)との積に等しい」ということで,少し確率の問題に慣れた人であればいつも無意識にやっている計算だと思います.例題で確認してみます.
当たりくじ3本を含む10本のくじの中から,引いたくじはもとに戻さないで,1本ずつ2回続けてくじを引く.2本とも当たる確率を求めよ.また,2回目が当たる確率いくらか.

1回目が当たるという事象を\(A\),2回目が当たるという事象を\(B\)とします.

2本とも当たる確率)
求める確率は\(P(A\cap B)\)です.確率の乗法定理より,\(P(A \cap B)=P(A)P(B|A)\)ですから,\(P(A)\)と\(P(B|A)\)を求めましょう.\(P(A)=\frac{3}{10}\)なのは問題ないでしょう.\(P(B|A)\)を求めます.これは「1回目が当たったという事実のもとで2回目が当たる確率」ですから,「引いたくじはもとに戻さない(当たりが1枚減る)」ことに注意せねばなりません.1回目に当たりを引けば,その後全体の枚数は9枚,当たりは2枚になりますから,\(P(B|A)=\frac{2}{9}\)です.したがって求める確率は\[P(A \cap B)=P(A)P(B|A)=\frac{3}{10}\cdot\frac{2}{9}=\frac{1}{15}\]となります.

2回目が当たる確率)
求める確率は\(P(B)\)です.まず気をつけて欲しいのは,求めようとしているのは確率\(P(B)\)であって確率\(P(B|A)\)ではない,ということ.すなわち,確率を求めようとしている今この時,まだ1回目は引いてもいない!何もしていない!ということです.まだなにもしていない,くじの前で黙って腕を組んだまま2回目を予想している(\(P(B)\)を求めようとしている)…そんなイメージです.1回目は引いてもいないし眼中にもありません.2回目だけを見つめています.以上に留意して,実際に\(P(B)\)を求めてみましょう.確率の定義に従います.2回目に起こりうるすべての場合の数は?2回目において,10枚のくじのどれが引きやすくどれが引きにくいなどということはありません(同様に確からしい).よって10通り.題意に適する場合の数は?当たり3枚のうちどれが引きやすくどれが引きにくいということはやはりありません.よって3通り.したがって求める確率は,\[P(B)=\frac{3}{10}\]となります.\(P(B|A)\neq P(B)\)であることに注目してください.

次の問題です.

当たりくじ3本を含む10本のくじの中から,1本ずつ2回続けてくじを引く.2本とも当たる確率を求めよ.ただし,引いたくじはもとに戻すものとする.また,2回目に当たる確率はいくらか.

2本とも当たる確率)
求める確率は\(P(A\cap B)\)です.確率の乗法定理より,\(P(A \cap B)=P(A)P(B|A)\)ですから,\(P(A)\)と\(P(B|A)\)を求めましょう.\(P(A)=\frac{3}{10}\)なのは問題ないでしょう.\(P(B|A)\)を求めます.これは「1回目が当たったという事実のもとで2回目が当たる確率」なわけですが,今回は引いたくじをもとに戻しています.ですから,2回目の状況は1回目の状況となんら変化がないことになります.したがって,\(P(B|A)=\frac{3}{10}\)となります.よって,求める確率は\[P(A \cap B)=P(A)P(B|A)=\frac{3}{10}\cdot\frac{3}{10}=\frac{9}{100}\]となります.

2回目が当たる確率)
求める確率は\(P(B)\)です.前問同様に考えます.2回目に起こりうるすべての場合の数は?2回目において10枚のくじのどれもが同様に確からしい.よって10通り.題意に適する場合の数は?当たり3枚のうちどれもがやはり同様に確からしい.よって3通り.したがって求める確率は,\[P(B)=\frac{3}{10}\]となります.前問と全く同じです.

さて,今回は\(P(B|A)\),\(P(B)\)はどちらも\(\frac{3}{10}\)ですから\(P(B|A)=P(B)\)です.この,\[P(B|A)=P(B)\]が成り立つとき,事象\(A\)と事象\(B\)は独立であるといいます.この式を「翻訳」すると,「\(B\)の確率は\(A\)が起きたかどうかなんて関係ない」と,すなわち「事象\(A\)と事象\(B\)が互いに影響を及ぼしていない」と読み取ることができます.

以上の準備のもと,次の定理が成り立ちます.

確率の乗法定理(その2)事象\(A\)と事象\(B\)が独立,すなわち\(P(B|A)=P(B)\)のとき\[P(A \cap B)=P(A)P(B)\]

高校教科書では上の話を,「2つの試行同士が互いに影響を与えない」ことを「独立」であると定義し,そのもとで確率の乗法定理(その2)を紹介しています.そしてこの話とは別の話題として(大分後になってから)「条件付き確率」から「確率の乗法定理(その2)」を導く,という順序で説明しています.なので,確率の乗法定理が2回(しかもそのあいだかなり間を挟んでから)登場することになり,それらにどのような関係があるのかがいまいち見えづらいのではないでしょうか.

しかし,上でみたように\[\text{条件付き確率の定義}\rightarrow\text{確率の乗法定理その1}\rightarrow\text{「独立」の定義}\rightarrow\text{確率の乗法定理その2}\]という流れで理解すると,高校教科書では「別々のもの」として載っている2つの確率の乗法定理が同じもの(その1を特殊化したものがその2)であることが明解で,論理的にはしっくりくると個人的に思います.

もっとも,実用上においては(実際問題を解く上では)どちらの理解でも大差はないと思いますが…

© 2024 佐々木数学塾, All rights reserved.