倍数の判定法

\(N\)を自然数とする.

\(N\)の下\(2\)桁が\(4\)の倍数\(~\Longleftrightarrow~\)\(N\)が\(4\)の倍数

証明

\(N\)を\(i\)桁目が\(a_{i-1}~(i=1,\cdots,n,a_{i-1}\in\mathbb{N})\)であるような自然数とする.
\begin{align*}
N&=a_0+a_1\times 10^{1}+a_2\times 10^{2}+\cdots+a_{n-1}\times 10^{n-1}\\
&=a_0+a_1\times 10^{1}+10^2(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})\\
&=a_0+a_1\times 10^{1}+4 \times 25(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})\tag{\(\ast\)}
\end{align*}

\(\Rightarrow\)について:
\(N\)の下\(2\)桁が\(4\)の倍数であるとする.\((\ast)\)により,
\[N=a_0+a_1\times 10^{1}+4 \times 25(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})\]仮定により,\(N\)の下\(2\)桁が\(4\)の倍数,すなわち\(a_0+a_1\times 10^{1}\)が\(4\)の倍数であるから\(N\)は\(4\)の倍数である.

\(\Leftarrow\)について:
\(N\)が\(4\)の倍数であるとする.\((\ast)\)により,
\begin{align*}
&N=a_0+a_1\times 10^{1}+4 \times 25(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})\\
\Longleftrightarrow~&a_0+a_1\times 10^{1} = N – 4 \times 25(a_2+ a_3 \times 10 + \cdots + a_{n-1}\times 10^{n-3})
\end{align*}仮定により,\(N\)は\(4\)の倍数であるから\(a_0+a_1\times 10^{1}\)すなわち\(N\)の下\(2\)桁は\(4\)の倍数である.

証明終

教科書の記述だと「\(4\)の倍数…下\(2\)桁が\(4\)の倍数である」というような記述をしており,必要条件なのか十分条件なのか曖昧なのでここにまとめておきます。他の倍数の判定もまったく同様の方針で証明できます。ちなみに合同式を使うともっと簡潔に記述できます。

「存在することを示せ」と言われたら 

(数学A,数学B)

「ツチノコの存在を証明しろ」と言われたら,どうすればいいか。
…それは簡単,ツチノコを捕まえて連れてくればOK!

ここで,数学Aの「整数の性質」で登場した「整数の割り算」について見てみます。

一般に,次のことが成り立つ。

整数\(a\)と正の整数\(b\)について\[a=qb+r,~0\leq r < b\]となる整数\(q,r\)はただ\(1\)通りに定まる。

『高等学校 数学A』数研出版

 
「定まる」とは要は「存在する」ということですが,いずれにせよ初めて学んだときは感覚的に当たり前すぎて疑問にすら思わなかったと思います。しかし,いざこれを証明しろと言われたらどうしたらいいでしょう…?

ずばり,実際にもってこよう!(以下では簡単のために\(a\geq 0\)とし,また一意性の部分はカットします)

\(a,b\)を\(a \geq 0,b>0\)を満たす整数とする.このとき,
\[a=qb+r,~0\leq r < b\tag{\(\ast\)}\]を満たす整数\(q,r\)が存在することを示せ.

証明

\(b(>0)\)を固定して,任意の\(a(\geq 0)\)について主張が成り立つことが示せればよい.

\(a < b\)であるとき:
\(q=0,r=a\)とすればよい.

\((0 <)b \leq a\)であるとき:
数学的帰納法で示す.\(a\)より小さい非負の整数で主張が成り立つとする.\(b>0\)より\(b \leq a \Leftrightarrow 0 \leq a-b (< a)\)であるから,\(a-b\)は\(a\)より小さい非負の整数である.したがって仮定により,\begin{align*}
&\exists q^{\prime},r^{\prime}\in \mathbb{Z}[a-b = q^{\prime}b+r^{\prime},0 \leq r^{\prime} \leq b]\\
\Longleftrightarrow~&\exists q^{\prime},r^{\prime}\in \mathbb{Z}[a = (q^{\prime}+1)b+r^{\prime},0 \leq r^{\prime} \leq b]
\end{align*}よって\((\ast)\)を満たす\(q,r\)として\(q=q^{\prime}+1,~r=r^{\prime}\)ととればよい.
これで,\(a\)より小さい非負の整数で主張が成り立てば,\(a\)でも主張が成り立つことが分かった.
\(a=0\)のときは,\(q=0,r=0\)とすればよい.

以上により任意の\(a(\geq 0)\)に対して\((\ast)\)を満たす\(q,r \in \mathbb{Z}\)が存在することが示せた.

証明終

現物もってくれば文句ないだろっていう。

こんなところで数学Bで学んだ(学ぶ)数学的帰納法が登場するのも面白いですね。しかも直前の番号のみを仮定する教科書の定番タイプではなく,直前以前の番号すべてを仮定するタイプの帰納法です。

パズルみたいな学校数学もまあまあ面白いけど,個人的にはこういう緻密な調査の方がすきだなあ。点数にならないけど。

 

任意の

とある問題の証明を読んでいたら,こんな一文に出会いました.記号の意味はさておき,\(\delta(A),\delta(\overline{A}),\epsilon\)はいずれも実数です.

(中略) \(\delta(\overline{A}) \leq \delta(A) + \epsilon\).\(\epsilon\)は任意の正数だから,\(\delta(\overline{A}) \leq \delta(A)\).

 

(ここで理解が詰まる)

「任意」と言われたから,どんな正数でもOKですが,でかい数をもってきても結論の不等式が得られるとは思えませんから,めちゃくちゃ小さい数を持ってくることにします.\(\delta(A)\)に加えられる数\(\epsilon\)をめちゃくちゃ小さくしたとしてもやっぱり\(\delta(\overline{A})\)よりも\(\delta(A)\)の方が大きい…,ということは\(\delta(A)\)の方が大きいと言える…のか…??感覚的には納得できるような気もしないでもないですが,でも小さいとはいえ正数を加えられている以上それを除いてもやはり\(\delta(\overline{A})\)以上だ,なんて言えるのだろうか,とも感じられ,釈然としません.

議論に関係のない文字がうるさいので,ちょっと簡略化して書き直します.

\(a,b \in \mathbb{R}\)とする.
任意の正数\(\epsilon\)に対して\(a \leq b + \epsilon\)が成り立つならば,\(a \leq b\)が成り立つ.

こう書くとちょっと高校数学の証明問題ぽいですね.実際,いちおう数学Aの集合と論理を終えた高1生なら理解できる(証明できる)と思います.調べてみましょう.

証明

背理法で示す.証明したいことは
\[\forall \epsilon >0 [a \leq b + \epsilon ]\Longrightarrow a \leq b\]
であるから,否定をとると
\begin{align*}
&\overline{\forall \epsilon >0 [a \leq b + \epsilon ]\Longrightarrow a \leq b}\\
\Longleftrightarrow~&\overline{\overline{\forall \epsilon >0 [a \leq b + \epsilon ]} \lor a \leq b}\\
\Longleftrightarrow~&\forall \epsilon >0 [a \leq b + \epsilon ] \land a > b
\end{align*}\(a>b\)だから,\(a-b > 0\).また,\(\forall \epsilon >0 [a \leq b + \epsilon ]\),つまり\(a \leq b + \epsilon\)が任意の\(\epsilon > 0\)について成り立つから,ここでは\(\epsilon=\frac{a-b}{2} >0\)ととることにする.すると,\[a \leq b +\frac{a-b}{2} \Longleftrightarrow a \leq b\]を得る.これは\(a>b\)であることに反する.

証明終

この証明,知識としてはほぼ高校数学の知識しか使ってない上にとてもシンプルな論証なので,教科書では無視しがちな「任意の」を重要性を確認させる問題としていいんじゃないかな,なんて思いました.「任意の」と言っているのだから,都合のよい\(\epsilon\)を代入したところがポイントです.

原因の確率

教科書では「研究」「発展」などに分類され,端っこの方に追いやれている話題です.授業でも扱わないことが多いので,無視して先に進む人も多いと思いますが,これは実はとても面白い話題です.今回はこの話題について触れてみます.

Aさんはがん検査を受けた.その結果は「要精密検査」であった.この検査は,実際にがんの人が要精密検査とされる確率が\(90\%\)で,実際にはがんではないのに要精密検査とされる確率が\(10\%\)であるような検査である.検診を受ける人の1000人に1人は実際にがんにかかっているとすると,Aさんが実際にがんである確率はいくらか.

Aさんを自分に置き換えて考えてみましょう.検査を受けたら「要精密検査」で,実際にがんの人が要精密検査とされる確率が\(90\%\)と言われたら,「ああ自分はがんなんだ…」と考え落ち込むのではないでしょうか.が,落ち着むのは尚早です.今置かれた状況をよく見ると「『要精密検査』という結果が与えられたときの,実際にがんである確率」ですから,これは条件付き確率です.では,実際に計算して自分ががんである確率を求めてみましょう!(注意:条件付き確率ベイズの定理についての知識が必要になります.未習の人はこれらの記事を先に読んでみてください.)条件付き確率の定義より,

\[P(\text{実際にがん}|\text{要精密検査})=\frac{P(\text{実際にがん}\cap\text{要精密検査})}{P(\text{要精密検査})}\]

まず,分子から求めてみます.確率の乗法定理より,
\[P(\text{実際にがん}\cap\text{要精密検査})=P(\text{実際にがん})P(\text{要精密検査}|\text{実際にがん})\]
です.問題文より,
\[P(\text{実際にがん})=\frac{1}{1000},\quad P(\text{要精密検査}|\text{実際にがん})=\frac{90}{100}\]
です.ですから分子は\[\frac{1}{1000}\times\frac{90}{100}\]となります.

次に分母.\(P(\text{要精密検査})\)つまり「『要精密検査』とされる確率」です.「『要精密検査』とされる」という状況には2通りあります.すなわち,

          • 「実際にがんで,『要精密検査』」
          • 「実際にはがんではないのに,『要精密検査』」

という2通りの場合です.それぞれ

          • \(P(\text{実際にがん}\cap \text{要精密検査})\)
          • \(P(\text{実際はがんではない}\cap \text{要精密検査})\)

と表されますから,結局分母は\[P(\text{実際にがん}\cap \text{要精密検査})+P(\text{実際はがんではない}\cap \text{要精密検査})\]と表されます(全確率の定理).さらに,確率の乗法定理より,この式は
\[P(\text{実際にがん})P(\text{要精密検査}|\text{実際にがん})+P(\text{実際はがんではない})P(\text{要精密検査}|\text{実際はがんではない})\]と表されます.前の項は前半で求めました.\(\frac{1}{1000}\times \frac{90}{100}\).後ろの項は,問題文より,
\[P(\text{実際はがんではない})=\frac{999}{1000},\quad P(\text{要精密検査}|\text{実際はがんではない})=\frac{10}{100}\]ですから\(\frac{999}{1000}\times\frac{10}{100}\).ですから分母は
\[\frac{1}{1000}\times \frac{90}{100}+\frac{999}{1000}\times\frac{10}{100}\]となります.したがって,求める確率\(P(\text{実際にがん}|\text{要精密検査})\)は,
\[
\begin{align*}
P(\text{実際にがん}|\text{要精密検査})&=\frac{\frac{1}{1000}\times\frac{90}{100}}{\frac{1}{1000}\times \frac{90}{100}+\frac{999}{1000}\times\frac{10}{100}}\\
&=\frac{1\times 90}{1\times 90 +999\times 10}\\
&=\frac{9}{9+999}\\
&=\frac{1}{112}\approx 0.00893
\end{align*}
\]となります.なんと,「要精密検査」と言われ実際にがんである確率はたったの\(0.00893\),つまり\(1\%\)にも満たない,ということです!

このように,確率は時として人間の直感を大きく裏切ります.しかし,論理によってはじき出された結果である以上,人間の感情としてどう感じようとそれは受け入れざるを得ない.そこが数学の面白さ・頼もしさのひとつだと思います.

全確率の定理

A君が友人とストリートファイターⅡ(スーファミ)で友人Bと対戦している.A君が勝つ確率は?

という問題があったとしましょう.こんな問題を見たらどう思いますか?(勝つか負けるか,2分の1だ!は間違いですよ~)当然,こう思うと思います「そらA君が誰使うかによるだろ」と.では,どんな場合があるでしょうか.リュウを使う場合,ケンを使う場合,ガイルを使う場合,春麗を使う場合….いろいろ考えられます.そして,ストⅡは2人同時に操作はできません(そのラウンドで1人のプレイヤーがリュウとケンと同時に操作し味方2人状態で戦うことはできません!).つまり同時に起こることはありませんから,これらの場合は互いに排反です.したがって,求める確率は
\[
\begin{align*}
P(\text{A君が勝つ})=&P(\text{A君が勝つ}\cap\text{リュウを使う})+P(\text{A君が勝つ}\cap\text{ケンを使う})\\
&+P(\text{A君が勝つ}\cap\text{エドモンド本田を使う})+P(\text{A君が勝つ}\cap\text{春麗を使う})\\
&+P(\text{A君が勝つ}\cap\text{ブランカを使う})+P(\text{A君が勝つ}\cap\text{ザンギエフを使う})\\
&+P(\text{A君が勝つ}\cap\text{ガイルを使う})+P(\text{A君が勝つ}\cap\text{ダルシムを使う})
\end{align*}
\]
「A君が勝つ」という事象を\(A\),「リュウを使う」という事象を\(B_1\),「ケンを使う」という事象を\(B_2\),「エドモンド本田を使う」という事象を\(B_3\),・・・,「ダルシムを使う」という事象を\(B_8\)とおくことにすれば,上の式は
\[
\begin{align*}
P(A)=&P(A\cap B_1)+P(A\cap B_2)+P(A\cap B_3)+P(A\cap B_4)\\
&+P(A\cap B_5)+P(A\cap B_6)+P(A\cap B_7)+P(A\cap B_8)\\
&=\displaystyle \sum^{8}_{i=1}P(A\cap B_i)
\end{align*}
\]すなわち\[P(A)=\displaystyle \sum^{8}_{i=1}P(A\cap B_i)\]と書けることがわかります.これを一般化すると,

全確率の定理\[P(A)=\displaystyle \sum^{\infty}_{i=1}P(A\cap B_i)\]

であると言えそうです.これを全確率の定理と呼びます.

ところで「ストリートファイター」ってゲーム自体今はどれくらい知名度あるんだろう?僕の時代は知らない人はいないくらいに流行っていました(スクリューパイルドライバーが出せたらまさにヒーロー).なので馴染みやすいかなと思って例に挙げましたが….調べると今はストリートファイター5まであるみたいですね.プレイアブルキャラは40人(!)らしいですから,この場合は\[P(A)=\displaystyle \sum^{40}_{i=1}P(A\cap B_i)\]ですね^^;

確率の乗法定理

条件付き確率の定義より,\[P(B|A)=\frac{P(B\cap A)}{P(A)}\]
両辺に\(P(A)\)を掛けることによって,\[P(A \cap B)=P(A)P(B|A)\]が得られます.(\(P(B \cap A)=P(A\cap B)\)としました)これを確率の乗法定理といいます.

確率の乗法定理(その1)\[P(A \cap B)=P(A)P(B|A)\]

日本語に翻訳すると「事象\(A\)と事象\(B\)が同時に起こる確率は,事象\(A\)の確率と,事象\(A\)の影響を受けた事象\(B\)の確率(条件付き確率)との積に等しい」ということで,少し確率の問題に慣れた人であればいつも無意識にやっている計算だと思います.例題で確認してみます.
当たりくじ3本を含む10本のくじの中から,引いたくじはもとに戻さないで,1本ずつ2回続けてくじを引く.2本とも当たる確率を求めよ.また,2回目が当たる確率いくらか.

1回目が当たるという事象を\(A\),2回目が当たるという事象を\(B\)とします.

2本とも当たる確率)
求める確率は\(P(A\cap B)\)です.確率の乗法定理より,\(P(A \cap B)=P(A)P(B|A)\)ですから,\(P(A)\)と\(P(B|A)\)を求めましょう.\(P(A)=\frac{3}{10}\)なのは問題ないでしょう.\(P(B|A)\)を求めます.これは「1回目が当たったという事実のもとで2回目が当たる確率」ですから,「引いたくじはもとに戻さない(当たりが1枚減る)」ことに注意せねばなりません.1回目に当たりを引けば,その後全体の枚数は9枚,当たりは2枚になりますから,\(P(B|A)=\frac{2}{9}\)です.したがって求める確率は\[P(A \cap B)=P(A)P(B|A)=\frac{3}{10}\cdot\frac{2}{9}=\frac{1}{15}\]となります.

2回目が当たる確率)
求める確率は\(P(B)\)です.まず気をつけて欲しいのは,求めようとしているのは確率\(P(B)\)であって確率\(P(B|A)\)ではない,ということ.すなわち,確率を求めようとしている今この時,まだ1回目は引いてもいない!何もしていない!ということです.まだなにもしていない,くじの前で黙って腕を組んだまま2回目を予想している(\(P(B)\)を求めようとしている)…そんなイメージです.1回目は引いてもいないし眼中にもありません.2回目だけを見つめています.以上に留意して,実際に\(P(B)\)を求めてみましょう.確率の定義に従います.2回目に起こりうるすべての場合の数は?2回目において,10枚のくじのどれが引きやすくどれが引きにくいなどということはありません(同様に確からしい).よって10通り.題意に適する場合の数は?当たり3枚のうちどれが引きやすくどれが引きにくいということはやはりありません.よって3通り.したがって求める確率は,\[P(B)=\frac{3}{10}\]となります.\(P(B|A)\neq P(B)\)であることに注目してください.

次の問題です.

当たりくじ3本を含む10本のくじの中から,1本ずつ2回続けてくじを引く.2本とも当たる確率を求めよ.ただし,引いたくじはもとに戻すものとする.また,2回目に当たる確率はいくらか.

2本とも当たる確率)
求める確率は\(P(A\cap B)\)です.確率の乗法定理より,\(P(A \cap B)=P(A)P(B|A)\)ですから,\(P(A)\)と\(P(B|A)\)を求めましょう.\(P(A)=\frac{3}{10}\)なのは問題ないでしょう.\(P(B|A)\)を求めます.これは「1回目が当たったという事実のもとで2回目が当たる確率」なわけですが,今回は引いたくじをもとに戻しています.ですから,2回目の状況は1回目の状況となんら変化がないことになります.したがって,\(P(B|A)=\frac{3}{10}\)となります.よって,求める確率は\[P(A \cap B)=P(A)P(B|A)=\frac{3}{10}\cdot\frac{3}{10}=\frac{9}{100}\]となります.

2回目が当たる確率)
求める確率は\(P(B)\)です.前問同様に考えます.2回目に起こりうるすべての場合の数は?2回目において10枚のくじのどれもが同様に確からしい.よって10通り.題意に適する場合の数は?当たり3枚のうちどれもがやはり同様に確からしい.よって3通り.したがって求める確率は,\[P(B)=\frac{3}{10}\]となります.前問と全く同じです.

さて,今回は\(P(B|A)\),\(P(B)\)はどちらも\(\frac{3}{10}\)ですから\(P(B|A)=P(B)\)です.この,\[P(B|A)=P(B)\]が成り立つとき,事象\(A\)と事象\(B\)は独立であるといいます.この式を「翻訳」すると,「\(B\)の確率は\(A\)が起きたかどうかなんて関係ない」と,すなわち「事象\(A\)と事象\(B\)が互いに影響を及ぼしていない」と読み取ることができます.

以上の準備のもと,次の定理が成り立ちます.

確率の乗法定理(その2)事象\(A\)と事象\(B\)が独立,すなわち\(P(B|A)=P(B)\)のとき\[P(A \cap B)=P(A)P(B)\]

高校教科書では上の話を,「2つの試行同士が互いに影響を与えない」ことを「独立」であると定義し,そのもとで確率の乗法定理(その2)を紹介しています.そしてこの話とは別の話題として(大分後になってから)「条件付き確率」から「確率の乗法定理(その2)」を導く,という順序で説明しています.なので,確率の乗法定理が2回(しかもそのあいだかなり間を挟んでから)登場することになり,それらにどのような関係があるのかがいまいち見えづらいのではないでしょうか.

しかし,上でみたように\[\text{条件付き確率の定義}\rightarrow\text{確率の乗法定理その1}\rightarrow\text{「独立」の定義}\rightarrow\text{確率の乗法定理その2}\]という流れで理解すると,高校教科書では「別々のもの」として載っている2つの確率の乗法定理が同じもの(その1を特殊化したものがその2)であることが明解で,論理的にはしっくりくると個人的に思います.

もっとも,実用上においては(実際問題を解く上では)どちらの理解でも大差はないと思いますが…

ベイズの定理

ベイズの定理\[P(B_i|A)=\frac{P(B_i)P(A|B_i)}{ \sum^{\infty}_{j=1}P(A)P( B_j|A)}\quad(i=1,2,\cdots)\]

(証明)
\[
\begin{align*}
P(B_i|A)&=\frac{P(B_i\cap A)}{P(A)}&\cdots~(1)\\
&=\frac{P(B_i)P(A|B_i)}{ \sum^{\infty}_{j=1}P(A\cap B_j)}&\cdots~(2)\\
&=\frac{P(B_i)P(A|B_i)}{ \sum^{\infty}_{j=1}P(A)P(B_j|A)}&\cdots~(3)
\end{align*}
\]
\((1)\)は条件付き確率の定義そのものです.\((2)\)の分子は確率の乗法定理より,分母は全確率の定理によります.\((2)\)の分母に再び確率の乗法定理を用いると\((3)\)となります.(証明終)

この「ベイズの定理」は,証明の過程を見て貰えば分かる通り,条件付き確率の定義式確率の乗法定理全確率の定理を用いて変形したものに過ぎません.なので,この式は「根っこはあくまで条件付き確率の定義式だ」という認識のもと,あとは(その条件付き確率の定義式を)問題に応じて便宜変形する,というような使い方をすればよいと思います(つまり「条件付き確率」の定義を納得しており,「確率の乗法定理」と「全確率の定理」を知ってさえいればベイズの定理そのものを覚える必要はない,ということ).

このベイズの定理を用いて,次の問題を解いてみます.早稲田大の問題です.

ジョーカーを除いたトランプ52枚の中から1枚のカードを抜き出し,表を見ないで箱の中にしまった.そして残りのカードをよくきってから3枚抜き出したところ,3枚ともダイヤであった.このとき箱の中のカードがダイヤである確率を求めよ.
(早稲田・文)

「抜き出された1枚がダイヤ」という事象を\(A\),「3枚ともダイヤ」という事象を\(B\)とおきます.すると,求める確率は\(P(A|B)\)と表せます.これをベイズの定理を用いて計算してみましょう.
\[
\begin{align*}
P(A|B)&=\frac{P(A\cap B)}{P(B)}\\
&=\frac{P(A)P(B|A)}{P(B\cap A)+P(B\cap \overline{A})}\\
&=\frac{P(A)P(B|A)}{P(A\cap B)+P(\overline{A}\cap B)}\\
&=\frac{P(A)P(B|A)}{P(A)P(B|A)+P(\overline{A})P(B|\overline{A})}\\
&=\frac{\frac{{}_{13} \mathrm{C}_1}{{}_{54} \mathrm{C}_1}\times \frac{{}_{12} \mathrm{C}_3}{{}_{53} \mathrm{C}_3}}{\frac{{}_{13} \mathrm{C}_1}{{}_{54} \mathrm{C}_1}\times \frac{{}_{12} \mathrm{C}_3}{{}_{53} \mathrm{C}_3}+\frac{{}_{39} \mathrm{C}_1}{{}_{54} \mathrm{C}_1}\times \frac{{}_{13} \mathrm{C}_3}{{}_{53} \mathrm{C}_3}}\\
&=\frac{10}{49}
\end{align*}
\]
となります.

条件付き確率の直観的理解

条件付き確率の定義事象\(A\),事象\(B\)に対して,確率\[\frac{P(B\cap A)}{P(A)}\]を\(A\)が与えられたときの\(B\)の条件付き確率と呼び,\(P(B|A)\)と書く.

この定義をみても,正直しっくりこないという人は多いと思います.今回はこの条件付き確率の定義の直観的理解を目指してみようと思います.

まず,次の問題を考えてみましょう.

問題
100人の生徒に,次の2つの質問をした.「さんまの内臓を食べるか食べないか」「エビフライのしっぽは食べるか食べないか」.すると,次のような結果を得た.この100人の中から,1人を選び出す.このとき,次の問いに答えよ.

    1. 選び出された生徒が,サンマの内臓を食べる確率
    2. 選び出された生徒が,エビフライのしっぽを食べる確率
    3. 選び出された生徒が,サンマの内臓もエビフライのしっぽも食べる確率
    4. 選び出された生徒が,サンマの内臓は食べるが,エビフライのしっぽは食べない確率
    5. 選び出された生徒が「自分はサンマの内臓は食べますよ~」と発言した.このとき,その生徒がエビフライのしっぽも食べる確率

(解答)

    1. 表をみると全生徒\(100\)人の中でサンマの内臓を食べる人数は\(45\)人ですから,求める確率は\(\frac{45}{100}\)
    2. 表を見ると全生徒\(100\)人の中でエビフライの尻尾を食べる人数は\(67\)人ですから,求める確率は\(\frac{67}{100}\)
    3. 表を見ると全生徒\(100\)人の中でサンマの内臓もエビフライの尻尾も食べる人数は\(35\)人ですから,求める確率は\(\frac{35}{100}\)
    4. 表を見ると全生徒\(100\)人の中でサンマの内臓は食べるが,エビフライの尻尾は食べない人数は\(10\)人ですから,求める確率は\(\frac{10}{100}\)

…と簡単に求められると思います.ここまでウォーミングアップ.問題は5.です.

実際に想像してみましょう.自分の目の前に一人生徒が来た.この生徒がエビフライの尻尾を食べるかどうかを予測したい.そこで,確率を求めようと表を眺めます.この時点では選び出されたその生徒がエビフライの尻尾を食べる確率は\(\frac{67}{100}\)です.図で視覚化すると,

という感じでしょうか.この時点では確率は2.とおんなじです.

しかしここで!その生徒が「自分はサンマの内臓は食べますよ~美味しいですよね~」と喋り,我々がその発言を聞いてしまったとしましょう.すると状況は一変してしまいます.なぜなら,目の前にいる生徒が「サンマの内臓を食べない」という可能性がなくなるから,図中の内臓を食べない(内臓×)という部分が消え失せ,結果として図が下のように変化してしまう(縮んでしまう)からです.

「サンマの内臓を食べる」という発言を聞いてしまった以上,この右側の縮んでしまった図のもとで確率を考え直さねばなりません:全体の人数が\(35+10=45\)で,そのうち尻尾を食べる人数は\(35\)人ですから,求める確率は\(\frac{35}{45}\left(=\frac{7}{9}\right)\)となります.図で視覚化すると,以下のようになります.

このように,「情報が入ることで,図(全事象)が縮む」というのが理解のポイントです.

ではいよいよ上の話を数式に翻訳してみましょう.
題意の確率「『(選び出された生徒が)内臓を食べる』という情報を耳にしたとき,その生徒が尻尾も食べる確率」を\[P(\text{尻尾}|\text{内臓})\]と書くことにしましょう.この確率は,上の議論により
\[
\frac{n(\text{尻尾}\cap \text{内臓})}{n(\text{内臓})}
\]
と書けることになります(下図参照).

したがって,\[P(\text{尻尾}|\text{内臓})=\frac{n(\text{尻尾}\cap \text{内臓})}{n(\text{内臓})}\]
さらに,分母分子を全体の人数\(n(\text{全体})(=100)\)で割ると
\[
\begin{align*}
P(\text{尻尾}|\text{内臓})&=\frac{n(\text{尻尾}\cap \text{内臓})}{n(\text{内臓})}\\
&=\frac{\frac{n(\text{尻尾}\cap \text{内臓})}{n(\text{全体})}}{\frac{n(\text{内臓})}{n(\text{全体})}}=\frac{P(\text{尻尾}\cap \text{内臓})}{P(\text{内臓})}
\end{align*}
\]
となります.したがって,
\[
P(\text{尻尾}|\text{内臓})=\frac{P(\text{尻尾}\cap \text{内臓})}{P(\text{内臓})}
\]
と書けます.さらに,「内臓(内臓を食べる)」という事象を\(A\),「尻尾(尻尾を食べる)」という事象を\(B\)とおけば
\[
P(B|A)=\frac{P(B\cap A)}{P(A)}
\]
となり最初の定義式を得ます.

以上をまとめると,条件付き確率の定義式の直観的イメージは次のようだといえそうです:

    • 情報が入ったことで,全事象が縮んでしまう(事象\(\overline{A}\)が消え,事象\(A\)だけ残る).
    • 縮んだあとの事象\(A\)のもとでの確率を考えることになるから,分母には\(P(A)\)がくる.
    • 分子には,事象\(\overline{A}\)が消えてしまい事象\(A\)だけに縮んでしまった,そのもとでの事象\(B\),すなわち事象\(B\cap A\)の確率\(P(B\cap A)\)がくる.

定義式\(P(B|A)=\frac{P(B\cap A)}{P(A)}\)は上の図のイメージ,すなわち「全事象が縮んだあとの確率計算」という認識をもっておくことが直観的理解のコツ,ということです.

ちなみに,\(P(B|A)\)は高校教科書では\(P_A(B)\)と表現していることに注意してください.どちらも同じ意味で,正しい記法です.が,個人的には\(P(B|A)\)の方をおすすめします.記述の際に書きやすいし,何より気持ち的に\(A\)が\(B\)の『後側』にあることから「\(A\)が\(B\)『背景』にあるんだよ」というニュアンスが伝わりやすいからです.

モンティ・ホール問題

みんな大好きモンティ・ホール問題.

プレーヤーの前に閉じた3つのドアがあって、1つのドアの後ろには景品の新車が、2つのドアの後ろには、はずれを意味するヤギがいる。プレーヤーは新車のドアを当てると新車がもらえる。プレーヤーが1つのドアを選択した後、司会のモンティが残りのドアのうちヤギがいるドアを開けてヤギを見せる。ここでプレーヤーは、最初に選んだドアを、残っている開けられていないドアに変更してもよいと言われる。ここでプレーヤーはドアを変更すべきだろうか?

この有名な問題にはいろいろな考え方があるようですが,ここでは条件付き確率の問題とみて(ベイズの定理を使って)考えてみましょう!

与えられた3つのドアにA,B,Cと名前をつけます.

まず「プレーヤーが1つのドアを選択した後、司会のモンティが残りのドアのうちヤギがいるドアを開けてヤギを見せる」とあるので,ここではプレーヤーが部屋Aを選び,モンティが部屋Bのドアを開けたとしましょう.

ここで,プレーヤーに選択権が与えられるわけです.最初の選択(部屋A)を変えずにいるか,それとも部屋Cに選択を変えるか.選び方によって確率は変わるのか,変わらないのか.変わるのであれば,どちらを選択するのが賢明か…?

計算してみましょう.モンティが部屋\(B\)を開けるという事象を「\(B\text{開}\)」,実際に部屋\(X\)に車があるという事象を「\(X\text{車}\)」と書くことにします.

まず,部屋を変えない場合

求めたい確率は「『モンティによって部屋Bが開けられた』という事実のもとで,部屋Aに車がある確率」ですから,\(P(A\text{車}|B\text{開})\)となります.計算してみましょう.

\[
\begin{align*}
P(A\text{車}|B\text{開})&=\frac{P(A\text{車}\cap B\text{開})}{P(B\text{開})}&\cdots(1)\\
&=\frac{P(A\text{車}\cap B\text{開})}{P(B\text{開}\cap A\text{車})+P(B\text{開}\cap C\text{車})}&\cdots(2)\\
&=\frac{\frac{1}{2}}{\frac{1}{2}+1}&\cdots(3)\\
&=\frac{1}{3}
\end{align*}
\]

\((1)\)は条件付き確率の定義そのものです.

\((2)\)の分母について:\(B\text{開}\)という状況,すなわち「モンティが部屋\(B\)を開ける」という状況を詳しく見ると次の3通りが考えられます

      • 車が部屋\(A\)にあって,モンティが部屋\(B\)を開ける
      • 車が部屋\(B\)にあって,モンティが部屋\(B\)を開ける
      • 車が部屋\(C\)にあって,モンティが部屋\(B\)を開ける

このうち真ん中「車が部屋\(B\)にあって,モンティが部屋\(B\)を開ける」はありえません(モンティはヤギの部屋を開けるわけですから).したがって\[P(B\text{開})=P(B\text{開}\cap A\text{車})+P(B\text{開}\cap C\text{車})\]となります(全確率の定理).

\((3)\)で\(P(A\text{車}\cap B\text{開})=\frac{1}{2}\)である理由:まず,プレーヤーが部屋\(A\)を選んだ以上モンティは部屋\(A\)を開けられません.そして今車は部屋\(A\)にありますから,部屋\(B\)と部屋\(C\)にはヤギがいることになります.つまりモンティには部屋\(B\)を開けるか,部屋\(C\)を開けるか2つの選択肢があります.したがって確率は\(\frac{1}{2}\)となります.

\((3)\)で\(P(B\text{開}\cap C\text{車})=1\)である理由:プレーヤーが部屋\(A\)を選んだ以上モンティは部屋\(A\)を開けられず,また部屋\(C\)には実際に車があるのでモンティは部屋\(C\)も開けられません.所以,モンティが開けられるのは部屋\(B\)しかありません.したがって確率は1となります.

以上に気を付けて計算すると確率は\(\dfrac{1}{3}\)になります.

次に,部屋を変える場合

求めたい確率は,「『モンティによって部屋Bが開けられた』という事実のもとで,部屋Cに車がある確率」ですから,\(P(C\text{車}|B\text{開})\)となります.同じように計算してみましょう.

\[
\begin{align*}
P(C\text{車}|B\text{開})&=\frac{P(C\text{車}\cap B\text{開})}{P(B\text{開})}\\
&=\frac{P(C\text{車}\cap B\text{開})}{P(B\text{開}\cap A\text{車})+P(B\text{開}\cap C\text{車})}\\
&=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}
\end{align*}
\]

よって確率は\(\dfrac{2}{3}\)となります.

結局,部屋を変えたほうがよい(当たる確率が倍になる!)ことが分かります!

ここで用いた考え方は「ベイズの定理」と呼ばれます.このベイズの定理を使うと,とくに難しい局面もないままに単純な計算のもと欲しい確率が手に入ってしまいます.

 

 

完全順列(その3・一般化)

前回前々回は「5人のプレゼント交換会」を行いました.

「\(n\)人のプレゼント交換会」ならどうでしょうか?この場合の完全順列の総数を求めてみましょう.

以下,\(i\)は自然数とします.

完全順列とは,「\(i\)番目に\(i\)が来ないような並び方\((1\leq i \leq n)\)」,すなわち\[\text{\(1\)以上\(n\)以下のすべての\(i\)に対して,\(i\)番目に\(i\)が来ない}\quad\cdots(\ast)\]という意味でした.この総数を求めたい,というわけですね.

今まで見てきた通り,これが一筋縄ではいかない問題でした.まして今回は\(n\)人です.そこで,お馴染みのアイデア:直接求めるのが難しいのなら,全体からその否定を除けばいい,という「余事象」の考え方で攻めてみることにしましょう.というわけで,\((\ast)\)の否定を考えてみます.

「すべての」の否定は「存在する」でしたから(なぜ?),\((\ast)\)の否定は次のようになります.\[\text{\(i\)番目が\(i\)になる\(1\)以上\(n\)以下の\(i\)が存在する}\quad\cdots(\ast\ast)\]

この総数を数え,そして並べ替えの総数\(n!\)から引いてやりましょう.ここで,\(i\)番目が\(i\)となるような事象を\(A_i~(1\leq i \leq n)\)とおくことにします.すると\((\ast\ast)\)となる総数は
\[n(A_1\cup A_2\cup A_3 \cup \cdots \cup A_n)=n \left( \bigcup^n_{i=1}A_i \right)\]と表せることになります.したがって,求める完全順列の総数は
\[n!-n\left(\bigcup^n_{i=1}A_i\right)\]
となります.さて,この式の二項目\(n(\bigcup^n_{i=1}A_i)\)ですが,これは以下のように計算できます(なぜ?).

\[
n\left(\displaystyle\bigcup_{i}^{n} A_i\right)=\displaystyle\sum_{i}^{n} n(A_i)-\displaystyle\sum_{i<j}^{n}n(A_i \cap A_j)+\displaystyle\sum_{i<j<k}^{n}n(A_i \cap A_j \cap A_k)-\cdots+(-1)^{n-1}\displaystyle\sum^{n}_{i<j<\cdots} n(A_i \cap A_j \cap \cdots )
\]

ここで,\[\displaystyle\sum_{i}^{n} n(A_i),~\sum_{i<j}^{n}n(A_i \cap A_j),~\sum_{i<j<k}^{n}n(A_i \cap A_j \cap A_k),\cdots,\sum^{n}_{i<j<\cdots} n(A_i \cap A_j \cap \cdots)\]を求めてみると,
\[
\begin{align*}
&\displaystyle\sum_{i}^{n} n(A_i)={ }_n\mathrm{C}_1\times (n-1)!\\
&\sum_{i<j}^{n}n(A_i \cap A_j)={ }_n\mathrm{C}_2\times(n-2)!\\
&\sum_{i<j<k}^{n}n(A_i \cap A_j \cap A_k)={ }_n\mathrm{C}_3\times(n-3)!\\
&\qquad\qquad\vdots\\
&\sum^{n}_{i<j<\cdots} n(A_i \cap A_j \cap \cdots)={ }_n\mathrm{C}_n\times(n-n)!
\end{align*}
\]
ですから結局,
\[n\left(\displaystyle\bigcup_{i}^{n} A_i\right)={ }_n\mathrm{C}_1\times (n-1)!-{ }_n\mathrm{C}_2\times(n-2)!+{ }_n\mathrm{C}_3\times(n-3)!-\cdots+(-1)^{n-1}{ }_n\mathrm{C}_n\times(n-n)!\]
よって,求める完全順列の総数は,
\[
\begin{align*}
n!-n\left(\bigcup^n_{i=1}A_i\right)=~&n!-\left({ }_n\mathrm{C}_1\times (n-1)!-{ }_n\mathrm{C}_2\times(n-2)!+{ }_n\mathrm{C}_3\times(n-3)!-\cdots+(-1)^{n-1}{ }_n\mathrm{C}_n\times(n-n)!\right)\\
=~&n!-\left(\frac{n!}{1!}-\frac{n!}{2!}+\frac{n!}{3!}-\cdots+(-1)^{n-1}\frac{n!}{n!} \right)\\
=~&n!-\frac{n!}{1!}+\frac{n!}{2!}-\frac{n!}{3!}+\cdots+(-1)^{n}\frac{n!}{n!} \\
=~&n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n}\frac{1}{n!}\right)\\
=~&n!\sum^{n}_{k=0}\frac{(-1)^k}{k!}\\
\end{align*}
\]
となります.

実験してみましょう.\(n=5\)と代入してみます.
\[
\begin{align*}
5!\sum^{5}_{k=0}\frac{(-1)^k}{k!}&=5!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}\right)\\
&=5\cdot 4\cdot 3-5\cdot 4 +5-1\\
&=60-20+5-1\\
&=44
\end{align*}
\]

おっけい!