ベイズの定理

ベイズの定理\[P(B_i|A)=\frac{P(B_i)P(A|B_i)}{ \sum^{\infty}_{j=1}P(A)P( B_j|A)}\quad(i=1,2,\cdots)\]

(証明)
\[
\begin{align*}
P(B_i|A)&=\frac{P(B_i\cap A)}{P(A)}&\cdots~(1)\\
&=\frac{P(B_i)P(A|B_i)}{ \sum^{\infty}_{j=1}P(A\cap B_j)}&\cdots~(2)\\
&=\frac{P(B_i)P(A|B_i)}{ \sum^{\infty}_{j=1}P(A)P(B_j|A)}&\cdots~(3)
\end{align*}
\]
\((1)\)は条件付き確率の定義そのものです.\((2)\)の分子は確率の乗法定理より,分母は全確率の定理によります.\((2)\)の分母に再び確率の乗法定理を用いると\((3)\)となります.(証明終)

この「ベイズの定理」は,証明の過程を見て貰えば分かる通り,条件付き確率の定義式確率の乗法定理全確率の定理を用いて変形したものに過ぎません.なので,この式は「根っこはあくまで条件付き確率の定義式だ」という認識のもと,あとは(その条件付き確率の定義式を)問題に応じて便宜変形する,というような使い方をすればよいと思います(つまり「条件付き確率」の定義を納得しており,「確率の乗法定理」と「全確率の定理」を知ってさえいればベイズの定理そのものを覚える必要はない,ということ).

このベイズの定理を用いて,次の問題を解いてみます.早稲田大の問題です.

ジョーカーを除いたトランプ52枚の中から1枚のカードを抜き出し,表を見ないで箱の中にしまった.そして残りのカードをよくきってから3枚抜き出したところ,3枚ともダイヤであった.このとき箱の中のカードがダイヤである確率を求めよ.
(早稲田・文)

「抜き出された1枚がダイヤ」という事象を\(A\),「3枚ともダイヤ」という事象を\(B\)とおきます.すると,求める確率は\(P(A|B)\)と表せます.これをベイズの定理を用いて計算してみましょう.
\[
\begin{align*}
P(A|B)&=\frac{P(A\cap B)}{P(B)}\\
&=\frac{P(A)P(B|A)}{P(B\cap A)+P(B\cap \overline{A})}\\
&=\frac{P(A)P(B|A)}{P(A\cap B)+P(\overline{A}\cap B)}\\
&=\frac{P(A)P(B|A)}{P(A)P(B|A)+P(\overline{A})P(B|\overline{A})}\\
&=\frac{\frac{{}_{13} \mathrm{C}_1}{{}_{54} \mathrm{C}_1}\times \frac{{}_{12} \mathrm{C}_3}{{}_{53} \mathrm{C}_3}}{\frac{{}_{13} \mathrm{C}_1}{{}_{54} \mathrm{C}_1}\times \frac{{}_{12} \mathrm{C}_3}{{}_{53} \mathrm{C}_3}+\frac{{}_{39} \mathrm{C}_1}{{}_{54} \mathrm{C}_1}\times \frac{{}_{13} \mathrm{C}_3}{{}_{53} \mathrm{C}_3}}\\
&=\frac{10}{49}
\end{align*}
\]
となります.

条件付き確率の直観的理解

条件付き確率の定義事象\(A\),事象\(B\)に対して,確率\[\frac{P(B\cap A)}{P(A)}\]を\(A\)が与えられたときの\(B\)の条件付き確率と呼び,\(P(B|A)\)と書く.

この定義をみても,正直しっくりこないという人は多いと思います.今回はこの条件付き確率の定義の直観的理解を目指してみようと思います.

まず,次の問題を考えてみましょう.

問題
100人の生徒に,次の2つの質問をした.「さんまの内臓を食べるか食べないか」「エビフライのしっぽは食べるか食べないか」.すると,次のような結果を得た.この100人の中から,1人を選び出す.このとき,次の問いに答えよ.

    1. 選び出された生徒が,サンマの内臓を食べる確率
    2. 選び出された生徒が,エビフライのしっぽを食べる確率
    3. 選び出された生徒が,サンマの内臓もエビフライのしっぽも食べる確率
    4. 選び出された生徒が,サンマの内臓は食べるが,エビフライのしっぽは食べない確率
    5. 選び出された生徒が「自分はサンマの内臓は食べますよ~」と発言した.このとき,その生徒がエビフライのしっぽも食べる確率

(解答)

    1. 表をみると全生徒\(100\)人の中でサンマの内臓を食べる人数は\(45\)人ですから,求める確率は\(\frac{45}{100}\)
    2. 表を見ると全生徒\(100\)人の中でエビフライの尻尾を食べる人数は\(67\)人ですから,求める確率は\(\frac{67}{100}\)
    3. 表を見ると全生徒\(100\)人の中でサンマの内臓もエビフライの尻尾も食べる人数は\(35\)人ですから,求める確率は\(\frac{35}{100}\)
    4. 表を見ると全生徒\(100\)人の中でサンマの内臓は食べるが,エビフライの尻尾は食べない人数は\(10\)人ですから,求める確率は\(\frac{10}{100}\)

…と簡単に求められると思います.ここまでウォーミングアップ.問題は5.です.

実際に想像してみましょう.自分の目の前に一人生徒が来た.この生徒がエビフライの尻尾を食べるかどうかを予測したい.そこで,確率を求めようと表を眺めます.この時点では選び出されたその生徒がエビフライの尻尾を食べる確率は\(\frac{67}{100}\)です.図で視覚化すると,

という感じでしょうか.この時点では確率は2.とおんなじです.

しかしここで!その生徒が「自分はサンマの内臓は食べますよ~美味しいですよね~」と喋り,我々がその発言を聞いてしまったとしましょう.すると状況は一変してしまいます.なぜなら,目の前にいる生徒が「サンマの内臓を食べない」という可能性がなくなるから,図中の内臓を食べない(内臓×)という部分が消え失せ,結果として図が下のように変化してしまう(縮んでしまう)からです.

「サンマの内臓を食べる」という発言を聞いてしまった以上,この右側の縮んでしまった図のもとで確率を考え直さねばなりません:全体の人数が\(35+10=45\)で,そのうち尻尾を食べる人数は\(35\)人ですから,求める確率は\(\frac{35}{45}\left(=\frac{7}{9}\right)\)となります.図で視覚化すると,以下のようになります.

このように,「情報が入ることで,図(全事象)が縮む」というのが理解のポイントです.

ではいよいよ上の話を数式に翻訳してみましょう.
題意の確率「『(選び出された生徒が)内臓を食べる』という情報を耳にしたとき,その生徒が尻尾も食べる確率」を\[P(\text{尻尾}|\text{内臓})\]と書くことにしましょう.この確率は,上の議論により
\[
\frac{n(\text{尻尾}\cap \text{内臓})}{n(\text{内臓})}
\]
と書けることになります(下図参照).

したがって,\[P(\text{尻尾}|\text{内臓})=\frac{n(\text{尻尾}\cap \text{内臓})}{n(\text{内臓})}\]
さらに,分母分子を全体の人数\(n(\text{全体})(=100)\)で割ると
\[
\begin{align*}
P(\text{尻尾}|\text{内臓})&=\frac{n(\text{尻尾}\cap \text{内臓})}{n(\text{内臓})}\\
&=\frac{\frac{n(\text{尻尾}\cap \text{内臓})}{n(\text{全体})}}{\frac{n(\text{内臓})}{n(\text{全体})}}=\frac{P(\text{尻尾}\cap \text{内臓})}{P(\text{内臓})}
\end{align*}
\]
となります.したがって,
\[
P(\text{尻尾}|\text{内臓})=\frac{P(\text{尻尾}\cap \text{内臓})}{P(\text{内臓})}
\]
と書けます.さらに,「内臓(内臓を食べる)」という事象を\(A\),「尻尾(尻尾を食べる)」という事象を\(B\)とおけば
\[
P(B|A)=\frac{P(B\cap A)}{P(A)}
\]
となり最初の定義式を得ます.

以上をまとめると,条件付き確率の定義式の直観的イメージは次のようだといえそうです:

    • 情報が入ったことで,全事象が縮んでしまう(事象\(\overline{A}\)が消え,事象\(A\)だけ残る).
    • 縮んだあとの事象\(A\)のもとでの確率を考えることになるから,分母には\(P(A)\)がくる.
    • 分子には,事象\(\overline{A}\)が消えてしまい事象\(A\)だけに縮んでしまった,そのもとでの事象\(B\),すなわち事象\(B\cap A\)の確率\(P(B\cap A)\)がくる.

定義式\(P(B|A)=\frac{P(B\cap A)}{P(A)}\)は上の図のイメージ,すなわち「全事象が縮んだあとの確率計算」という認識をもっておくことが直観的理解のコツ,ということです.

ちなみに,\(P(B|A)\)は高校教科書では\(P_A(B)\)と表現していることに注意してください.どちらも同じ意味で,正しい記法です.が,個人的には\(P(B|A)\)の方をおすすめします.記述の際に書きやすいし,何より気持ち的に\(A\)が\(B\)の『後側』にあることから「\(A\)が\(B\)『背景』にあるんだよ」というニュアンスが伝わりやすいからです.

モンティ・ホール問題

みんな大好きモンティ・ホール問題.

プレーヤーの前に閉じた3つのドアがあって、1つのドアの後ろには景品の新車が、2つのドアの後ろには、はずれを意味するヤギがいる。プレーヤーは新車のドアを当てると新車がもらえる。プレーヤーが1つのドアを選択した後、司会のモンティが残りのドアのうちヤギがいるドアを開けてヤギを見せる。ここでプレーヤーは、最初に選んだドアを、残っている開けられていないドアに変更してもよいと言われる。ここでプレーヤーはドアを変更すべきだろうか?

この有名な問題にはいろいろな考え方があるようですが,ここでは条件付き確率の問題とみて(ベイズの定理を使って)考えてみましょう!

与えられた3つのドアにA,B,Cと名前をつけます.

まず「プレーヤーが1つのドアを選択した後、司会のモンティが残りのドアのうちヤギがいるドアを開けてヤギを見せる」とあるので,ここではプレーヤーが部屋Aを選び,モンティが部屋Bのドアを開けたとしましょう.

ここで,プレーヤーに選択権が与えられるわけです.最初の選択(部屋A)を変えずにいるか,それとも部屋Cに選択を変えるか.選び方によって確率は変わるのか,変わらないのか.変わるのであれば,どちらを選択するのが賢明か…?

計算してみましょう.モンティが部屋\(B\)を開けるという事象を「\(B\text{開}\)」,実際に部屋\(X\)に車があるという事象を「\(X\text{車}\)」と書くことにします.

まず,部屋を変えない場合

求めたい確率は「『モンティによって部屋Bが開けられた』という事実のもとで,部屋Aに車がある確率」ですから,\(P(A\text{車}|B\text{開})\)となります.計算してみましょう.

\[
\begin{align*}
P(A\text{車}|B\text{開})&=\frac{P(A\text{車}\cap B\text{開})}{P(B\text{開})}&\cdots(1)\\
&=\frac{P(A\text{車}\cap B\text{開})}{P(B\text{開}\cap A\text{車})+P(B\text{開}\cap C\text{車})}&\cdots(2)\\
&=\frac{\frac{1}{2}}{\frac{1}{2}+1}&\cdots(3)\\
&=\frac{1}{3}
\end{align*}
\]

\((1)\)は条件付き確率の定義そのものです.

\((2)\)の分母について:\(B\text{開}\)という状況,すなわち「モンティが部屋\(B\)を開ける」という状況を詳しく見ると次の3通りが考えられます

      • 車が部屋\(A\)にあって,モンティが部屋\(B\)を開ける
      • 車が部屋\(B\)にあって,モンティが部屋\(B\)を開ける
      • 車が部屋\(C\)にあって,モンティが部屋\(B\)を開ける

このうち真ん中「車が部屋\(B\)にあって,モンティが部屋\(B\)を開ける」はありえません(モンティはヤギの部屋を開けるわけですから).したがって\[P(B\text{開})=P(B\text{開}\cap A\text{車})+P(B\text{開}\cap C\text{車})\]となります(全確率の定理).

\((3)\)で\(P(A\text{車}\cap B\text{開})=\frac{1}{2}\)である理由:まず,プレーヤーが部屋\(A\)を選んだ以上モンティは部屋\(A\)を開けられません.そして今車は部屋\(A\)にありますから,部屋\(B\)と部屋\(C\)にはヤギがいることになります.つまりモンティには部屋\(B\)を開けるか,部屋\(C\)を開けるか2つの選択肢があります.したがって確率は\(\frac{1}{2}\)となります.

\((3)\)で\(P(B\text{開}\cap C\text{車})=1\)である理由:プレーヤーが部屋\(A\)を選んだ以上モンティは部屋\(A\)を開けられず,また部屋\(C\)には実際に車があるのでモンティは部屋\(C\)も開けられません.所以,モンティが開けられるのは部屋\(B\)しかありません.したがって確率は1となります.

以上に気を付けて計算すると確率は\(\dfrac{1}{3}\)になります.

次に,部屋を変える場合

求めたい確率は,「『モンティによって部屋Bが開けられた』という事実のもとで,部屋Cに車がある確率」ですから,\(P(C\text{車}|B\text{開})\)となります.同じように計算してみましょう.

\[
\begin{align*}
P(C\text{車}|B\text{開})&=\frac{P(C\text{車}\cap B\text{開})}{P(B\text{開})}\\
&=\frac{P(C\text{車}\cap B\text{開})}{P(B\text{開}\cap A\text{車})+P(B\text{開}\cap C\text{車})}\\
&=\frac{1}{\frac{1}{2}+1}=\frac{2}{3}
\end{align*}
\]

よって確率は\(\dfrac{2}{3}\)となります.

結局,部屋を変えたほうがよい(当たる確率が倍になる!)ことが分かります!

ここで用いた考え方は「ベイズの定理」と呼ばれます.このベイズの定理を使うと,とくに難しい局面もないままに単純な計算のもと欲しい確率が手に入ってしまいます.

 

 

完全順列(その3・一般化)

前回前々回は「5人のプレゼント交換会」を行いました.

「\(n\)人のプレゼント交換会」ならどうでしょうか?この場合の完全順列の総数を求めてみましょう.

以下,\(i\)は自然数とします.

完全順列とは,「\(i\)番目に\(i\)が来ないような並び方\((1\leq i \leq n)\)」,すなわち\[\text{\(1\)以上\(n\)以下のすべての\(i\)に対して,\(i\)番目に\(i\)が来ない}\quad\cdots(\ast)\]という意味でした.この総数を求めたい,というわけですね.

今まで見てきた通り,これが一筋縄ではいかない問題でした.まして今回は\(n\)人です.そこで,お馴染みのアイデア:直接求めるのが難しいのなら,全体からその否定を除けばいい,という「余事象」の考え方で攻めてみることにしましょう.というわけで,\((\ast)\)の否定を考えてみます.

「すべての」の否定は「存在する」でしたから(なぜ?),\((\ast)\)の否定は次のようになります.\[\text{\(i\)番目が\(i\)になる\(1\)以上\(n\)以下の\(i\)が存在する}\quad\cdots(\ast\ast)\]

この総数を数え,そして並べ替えの総数\(n!\)から引いてやりましょう.ここで,\(i\)番目が\(i\)となるような事象を\(A_i~(1\leq i \leq n)\)とおくことにします.すると\((\ast\ast)\)となる総数は
\[n(A_1\cup A_2\cup A_3 \cup \cdots \cup A_n)=n \left( \bigcup^n_{i=1}A_i \right)\]と表せることになります.したがって,求める完全順列の総数は
\[n!-n\left(\bigcup^n_{i=1}A_i\right)\]
となります.さて,この式の二項目\(n(\bigcup^n_{i=1}A_i)\)ですが,これは以下のように計算できます(なぜ?).

\[
n\left(\displaystyle\bigcup_{i}^{n} A_i\right)=\displaystyle\sum_{i}^{n} n(A_i)-\displaystyle\sum_{i<j}^{n}n(A_i \cap A_j)+\displaystyle\sum_{i<j<k}^{n}n(A_i \cap A_j \cap A_k)-\cdots+(-1)^{n-1}\displaystyle\sum^{n}_{i<j<\cdots} n(A_i \cap A_j \cap \cdots )
\]

ここで,\[\displaystyle\sum_{i}^{n} n(A_i),~\sum_{i<j}^{n}n(A_i \cap A_j),~\sum_{i<j<k}^{n}n(A_i \cap A_j \cap A_k),\cdots,\sum^{n}_{i<j<\cdots} n(A_i \cap A_j \cap \cdots)\]を求めてみると,
\[
\begin{align*}
&\displaystyle\sum_{i}^{n} n(A_i)={ }_n\mathrm{C}_1\times (n-1)!\\
&\sum_{i<j}^{n}n(A_i \cap A_j)={ }_n\mathrm{C}_2\times(n-2)!\\
&\sum_{i<j<k}^{n}n(A_i \cap A_j \cap A_k)={ }_n\mathrm{C}_3\times(n-3)!\\
&\qquad\qquad\vdots\\
&\sum^{n}_{i<j<\cdots} n(A_i \cap A_j \cap \cdots)={ }_n\mathrm{C}_n\times(n-n)!
\end{align*}
\]
ですから結局,
\[n\left(\displaystyle\bigcup_{i}^{n} A_i\right)={ }_n\mathrm{C}_1\times (n-1)!-{ }_n\mathrm{C}_2\times(n-2)!+{ }_n\mathrm{C}_3\times(n-3)!-\cdots+(-1)^{n-1}{ }_n\mathrm{C}_n\times(n-n)!\]
よって,求める完全順列の総数は,
\[
\begin{align*}
n!-n\left(\bigcup^n_{i=1}A_i\right)=~&n!-\left({ }_n\mathrm{C}_1\times (n-1)!-{ }_n\mathrm{C}_2\times(n-2)!+{ }_n\mathrm{C}_3\times(n-3)!-\cdots+(-1)^{n-1}{ }_n\mathrm{C}_n\times(n-n)!\right)\\
=~&n!-\left(\frac{n!}{1!}-\frac{n!}{2!}+\frac{n!}{3!}-\cdots+(-1)^{n-1}\frac{n!}{n!} \right)\\
=~&n!-\frac{n!}{1!}+\frac{n!}{2!}-\frac{n!}{3!}+\cdots+(-1)^{n}\frac{n!}{n!} \\
=~&n!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+(-1)^{n}\frac{1}{n!}\right)\\
=~&n!\sum^{n}_{k=0}\frac{(-1)^k}{k!}\\
\end{align*}
\]
となります.

実験してみましょう.\(n=5\)と代入してみます.
\[
\begin{align*}
5!\sum^{5}_{k=0}\frac{(-1)^k}{k!}&=5!\left(1-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{4!}-\frac{1}{5!}\right)\\
&=5\cdot 4\cdot 3-5\cdot 4 +5-1\\
&=60-20+5-1\\
&=44
\end{align*}
\]

おっけい!

完全順列(その2)

前回のプレゼント交換会を次ので考えます.例えば前回の例
\[
\left(
\begin{array}{ccc}
1 & 2 & 3 & 4 & 5\\
2 & 1 & 4 & 5 & 3
\end{array}
\right)
\]であれば

と表し,
\[
\left(
\begin{array}{ccc}
1 & 2 & 3 & 4 & 5\\
2 & 3 & 4 & 5 & 1
\end{array}
\right)
\]であれば

といった具合です.

以下,\(n\)個の完全順列の総数を\(f(n)\)で表すことにします(なので求めたいものは\(f(5)\)).また,\(i\)行\(j\)列にある欄を\((i,~j)\)と表すことにします.

ここで,まず1行目に着目します.1行目で〇が入り得るのは,2,3,4,5のいずれかです.

ここでは\((1,~2)\)に〇が入る場合を考えてみます.

こんな場合です.

次に,2行目に着目します.ここでは,

(ⅰ)\((2,~1)\)に〇が入る場合

と,

(ⅱ)\((2,~1)\)に入らない場合(\((2,~3)\)か\((2,~4)\)か\((2,~5)\)に入る場合)

が考えられますので,場合分けしてみます.表で表すと,

という具合です.

まず(ⅰ)の場合について考察してみます.
この場合,下図の黄色と緑のライン上に〇が来ることはありません(〇が同じ行または列でダブるとそれはプレゼントを2つ受け取るor与えることを意味してしまうから).なので,どうせ〇が来ないのならいっそのこと消しゴムで消して繋げてしまいましょう.

そうして出来上がった表を眺めると,この完全順列の総数は\(f(3)\)となることがわかります.これで(ⅰ)のときすなわち\((2,~1)\)に〇が入る場合その完全順列の総数は\(f(3)\)であることが分かりました.

次に(ⅱ)の場合について考えてみます.(ⅰ)のときと同様に考え,

出来上がった表を眺めると,この完全順列の総数は\(f(4)\)となることがわかります.これで(ⅱ)のとき\((2,~1)\)に〇が入らない場合その完全順列の総数は\(f(4)\)であることが分かりました.

ここまででしたことをまとめます.

最初の場合分けで4通り,この4通りそれぞれにおいて,(ⅰ)タイプと(ⅱ)タイプに分類したので,結局,求める\(f(5)\)は,
\[f(5)=4(f(3)+f(4))\]
となります.

以上の議論を\(5\)人のプレゼント交換会ではなく,\(n\)人で置き換えると,
\[f(n+2)=(n+1)(f(n)+f(n+1))\]という漸化式が得られます.これを利用すれば,

\[
\begin{align*}
&f(3)=2(f(1)+f(2))\\
&f(4)=3(f(2)+f(3))\\
&f(5)=4(f(3)+f(4))\\
\end{align*}
\]

\(f(1)=0,~f(2)=1\)ですから,順次計算することで
\(f(3)=2,~f(4)=9,~f(5)=44\)となり答えを得ます.

このように考えると,プレゼント交換会の人数がそれなりに多くても,漸化式\(f(n+2)=(n+1)(f(n)+f(n+1))\)を考えることで単純な計算により完全順列の総数を算出できることが分かります.

次は,完全順列の総数の一般化を考えてみます.

完全順列

問題
5人がそれぞれプレゼントを持ち寄り,それらを無作為に1つずつ再分配してプレゼント交換するとき,5人すべてが自分のプレゼントと異なるプレゼントを受け取る場合は何通りあるか.

一般に,\(1\)~\(n\)の数字を1列に並べるとき,数字\(i~(1\leq i \leq n)\)が左から\(i\)番目に来ないような並べ方を完全順列といいます.今回はこの完全順列の総数の求め方について触れてみたいと思います.

まず,5人にそれぞれ番号をふりましょう.1,2,3,4,5.

このとき,次のように書くことに決めます.

例えば「1が2へ渡し,2が1へ渡し,3が4へ渡し,4が5へ渡し,5が3へ渡す」なら

\[
\left(
\begin{array}{ccc}
1 & 2 & 3 & 4 & 5\\
2 & 1 & 4 & 5 & 3
\end{array}
\right)\quad \cdots (1)
\]

例えば「1が2へ渡し,2が3へ渡し,3が4へ渡し,4が5へ渡し,5が1へ渡す」なら

\[
\left(
\begin{array}{ccc}
1 & 2 & 3 & 4 & 5\\
2 & 3 & 4 & 5 & 1
\end{array}
\right)\quad \cdots (2)
\]

例えば「全員,自分のプレゼントを自分に渡す」なら

\[
\left(
\begin{array}{ccc}
1 & 2 & 3 & 4 & 5\\
1 & 2 & 3 & 4 & 5
\end{array}
\right)
\]

といった具合です(この場合は題意に沿いませんね).このようにして考えると,この「プレゼント交換会」にはある特徴が見えてきます.

まず\((1)\).1に着目すると\[1~\rightarrow~2~\rightarrow~1~\rightarrow~\cdots\]と2つの数字がループしていることが分かります.
3に着目するとこちらは\[3~\rightarrow~4~\rightarrow~5~\rightarrow~3~\rightarrow~\cdots\]と3つの数字がループしています.

\((2)\)はどうでしょう.1に着目すると
\[1~\rightarrow~2~\rightarrow~3~\rightarrow~4~\rightarrow~5~\rightarrow~1\cdots\]と5つの文字がループしています.

このようにみると,「プレゼント交換会」にはループ構造が潜んでいることがわかります.

では,この二つの例に登場しなかった1つの文字のループ,4つの文字のループはあるでしょうか?これは明らかにダメですね.例えば\(1~\rightarrow~1~\rightarrow~\cdots\)は1が自分のプレゼントを受け取ることになり題意に反します.\(1~\rightarrow~2~\rightarrow~3~\rightarrow~4~\rightarrow~1~\cdots\)はよさそうですが残りの5が\(5~\rightarrow~5~\rightarrow~\cdots\)となり自分がプレゼントを受け取ることになりますのでこれもやはり題意に反します.

ここでひとつ言葉を定義しましょう.2つの数字のループ構造互換3つ以上の数字のループ構造巡回置換,ループしないとき(自分が自分のプレゼントを受け取るとき)恒等置換と呼ぶことにします.\((1)\)の例だと互換が1個で巡回置換が1個,\((2)\)の例だと互換が0個で巡回置換が1個,\((3)\)の例だと恒等置換が5個ですね.

ここまでくるとふと思います.結局,完全順列の総数は「互換の数で場合分けして求めればよいのでは?」と.やってみましょう.

    1. 互換が0個のとき
      5つの数字の巡回置換(5つの数のループ)になりますから,
      \[1~\rightarrow~2~\rightarrow~3~\rightarrow~4~\rightarrow~5~\rightarrow~1\cdots\]
      この場合のループの種類は,真ん中の2,3,4,5の順列の数だけ存在するので,\(4!=24\)通り.
    2. 互換が1個のとき
      どの2数を互換とするかで\({}_5\mathrm{C}_2=10\)通り.そのそれぞれに対し,3つの数字の巡回置換(3つの数のループ)を考える.例えば3,4,5のループなら,\[3~\rightarrow~4~\rightarrow~5~\rightarrow~3~\rightarrow~\cdots\]であるから(ⅰ)と同様に考えて真ん中の4,5の順列より\(2!=2\)通り.したがって\(10\times2=20\)通り
    3. 互換が2個のとき
      残りの1つの数字が恒等置換になるので,題意に適さない.

以上より,\(24+20=44\)通り ・・・(答)

さて,ここで問題.今回の問題はたった5人の小規模なプレゼント交換会でしたが,これがもし「10人」「20人」・・・と人数が増えていったらどのように完全順列の総数を求めればいいのでしょうか(また「互換の数で場合分け」はしたくないですよね^^;).また,人数を「\(n\)人」としたとき,完全順列の総数は求まるのでしょうか?

次回はこの話題について書いてみたいと思います.

不定方程式の解法

不定方程式の解法について考察してみます.

不定方程式\[49x-23y=1\]の解となる最小の自然数\(x\)を答えよ.

(2019 センター試験数学Ⅰ・A 改題)

定石的には,ユークリッドの互除法により特殊解を見つけて,それを代入したものを辺々引いて・・・という手順を踏みますが,合同式を利用すれば

【解答】

以下,\(\mathrm{mod} 23\)とする.

\[
\begin{align*}
&49x-23y\equiv1\\
&49x\equiv1\\
&3x\equiv1\\
&24x\equiv8\\
&x\equiv8\\
\end{align*}
\]

したがって,一般解は\(x=23k+8\)(\(k\)は任意の整数)であるから答えは\(8\)

【解答終】

・・・と,このようにスピーディーに解答できるので,ぜひマスターしておきたいところです.変形のイロハについてもいずれ記事にしたいと思ってます.塾でも希望者には合同式講座を開催しますので,ぜひ参加してください^^

宝くじの期待値

宝くじを買います.人はみなそれぞれ当たる額を予想するでしょう.
「1億円当たってほしい!」「いや欲は言わない,10万円でいいから当たって欲しい」「3億円あたったら何しよう(妄想)」などなど.

このような願望に基づく「人間的な予測値」ではなく,極力客観的な,すなわち「数学的な予測値」を考えてみましょう.それが「期待値」という値です.
\[\text{期待値とは,いくら当たるのかを数学的に予測した値}\]計算式はかんたん.\[\sum \left(\text{(当選金額)}\times\text{(当選確率)}\right)\]

さあ,宝くじの期待値を計算してみましょう.

まず,宝くじの仕組みの確認から.
宝くじ券には,「ユニット」「組」「番号」の3つの情報で構成されています.

ここでは,「ドリームジャンボ宝くじ(第787回全国自治宝くじ)」を例にとって考えてみます.

この回の宝くじでは,

\begin{align*}
\text{組に}&~~1~100\\
\text{番号に}&~~100000~199999
\end{align*}

の番号が振られているそうです.
組が100通り,番号が100000通りですから,\[100\times100,000=10,000,000\]つまり1千万枚の宝くじ券があることになります.この,組と番号の1千万通りの宝くじ券を「1ユニット」と呼びます.この第787回宝くじでは,\[13~\text{ユニット}\]発行するそうですから,結局,\[10,000,000\times13=130,000,000\]すなわち宝くじの発行総枚数は1億3千万枚,ということになります.ひえ~.

次に,各賞の枚数を計算してみましょう.

※ 当選の組と番号は第770回のドリームジャンボ宝くじのを流用しています
※ \(\ast\)\(\ast\)\(\ast\)は1~100までの任意の数です
※ ■は0または1が入ります
※ ●は0~9までの数が入ります

番号 1ユニット
あたりの本数
13ユニット
あたりの本数
合計 当選金額 確率
1等 96 122234 1 13 13 300,000,000 0.0000001
1等
前後賞
96
96
122233
122235
1
1
13
13
26 100,000,000 0.0000002
1等
組違い賞
1~95
97~100
122234 99 1287 1287 100,000 0.0000099
2等 135
29
93
186460
197327
131661
1
1
1
13
13
13
39 10,000,000 0.0000003
3等 ■●3
■●3
■●4
195345
139690
193003
2×10=20
2×10=20
2×10=20
260
260
260
780 1,000,000 0.000006
4等 \(\ast\)\(\ast\)\(\ast\)
\(\ast\)\(\ast\)\(\ast\)
1●9246
1●7311
100×10=1000
100×10=1000
13000
13000
26000 100,000 0.0002
5等 \(\ast\)\(\ast\)\(\ast\) 1●●823 100×10^2=10000 130000 130000 10,000 0.001
6等 \(\ast\)\(\ast\)\(\ast\) 1●●●13 100×10^3=100000 1300000 1300000 3,000 0.01
7等 \(\ast\)\(\ast\)\(\ast\) 1●●●●2 100×10^4=1000000 13000000 13000000 300 0.1

期待値を計算すると,

\[
\begin{align*}
&3000000000\times\frac{13}{130000000}+100000000\times\frac{26}{130000000}+100000\times\frac{1287}{130000000}\\+&10000000\times\frac{39}{130000000}+1000000\times\frac{780}{130000000}+100000\times\frac{26000}{130000000}\\
+&10000\times\frac{130000}{130000000}+3000\times\frac{1300000}{130000000}+300\times\frac{13000000}{130000000}\\
=&150
\end{align*}
\]

ゼロの個数あってるかな(実際はエクセルで計算しました).

・・・150円.つまり数学的には150円当たる,と予測できるわけです.しかし考えてみてください.ドリームジャンボ宝くじは一枚いくらしますか.

・・・300円!!!

うーん.買わない方がいいですね^^;

 

おわり

合同式の有用性

数学Aの整数分野に「合同式」という話題があります.しかし,学校の授業だと時間の関係上割愛されることも多い.実際,僕も学校で授業するときは時間が一杯一杯で余裕がなく,ここはいつもとばしていました.そんなことをふと思い出したので,ちょっとこの話題について触れてみようと思います.

数学検定1級の1次の問題に,こんな問題がありました.\[23^{23^{23}}\text{の第一位の数を答えよ}\]「第一位の数を求めろ」問題の定石は,おなじみ「実験して推測しろ」なので,少し実験してみることにします.一の位の数のみに着目して計算すると,\[3\rightarrow9\rightarrow7\rightarrow1\rightarrow3\rightarrow9\rightarrow7\rightarrow1\rightarrow\cdots\]となり,\[3,9,7,1\]を繰り返していることが分かります.これはいわば繰り返しの周期が4であることを示しているので,結局,\(23\)の冪(べきと読みます)\(23^{23}\)に周期4がいくつあるか,すなわち,\[23^{23}\text{を}4\text{で割った余りはいくらか}\]という問題に帰着します.ここで,合同式を利用すると以下のように数行で終わります.\[\begin{align}23^{23}&\equiv (-1)^{23} \\&\equiv -1 \\ &\equiv 3\end{align}\]ゆえに,\[23^{23}=4\times Q+3\]したがって,求める答えは周期の前から3番目,すなわち7と分かります.かんたん!

このように合同式を学んでおくと解きづらい問題・考えづらい問題も明解に論述できることが少なくありません.というわけで,皆さんも合同式について学んでみてはいかがでしょうか.

© 2024 佐々木数学塾, All rights reserved.