\(\exists x[a \leq x \leq b] \Longleftrightarrow a\leq b\)

\(\exists x[a \leq x \leq b] \Longleftrightarrow a\leq b\)

証明

(\(\Rightarrow\))
存在する\(x\)を\(c\)とおくと,\(a \leq c \leq b\)が成り立つ.ゆえに\(a \leq b\)がいえる.

(\(\Leftarrow\))
\(a \leq b\)とする.このとき,\(\frac{a+b}{2}\)をとれば,\(a \leq \frac{a+b}{2} \leq b\)とかける.すなわち\(a \leq x \leq b\)をみたす\(x\)が(\(\frac{a+b}{2}\)として)存在する.

(証明終)

この問題で使いました.

同値変形で遊ぶ

\(x,y\)が\(4\)つの不等式\[x \geq 0,~y \geq 0,~2x+y \leq 8,~2x+3y \leq 12 \]を同時に満たすとき,\(x+y\)の最大値,最小値を求めよ.

出典:高等学校 数学Ⅱ 数研出版

数学Ⅱ教科書の「軌跡と領域」における最後に登場する中ボス的な有名問題です.いわゆる「線型計画法」によって解く問題ですね.「領域を描いて~直線がその領域に触れる範囲内で切片が最大・最小のものを答えて~」みたいなやつ.

これを教科書のように絵に頼らず,論理式で記述してみます.

解答

\begin{align*}
&x+yがkという値をとる\\
\Longleftrightarrow~& \exists x \exists y [x+y=k \land x \geq 0 \land y \geq 0 \land 2x+y \leq 8 \land 2x+3y \leq 12]\tag{1}\\
\Longleftrightarrow~& \exists x \exists y[y=k-x \land x \geq 0 \land y \geq 0 \land 2x+y \leq 8 \land 2x+3y \leq 12]\tag{\(\ast\)}\\
\Longleftrightarrow~& \exists x [x \geq 0 \land k-x \geq 0 \land 2x+(k-x) \leq 8 \land 2x+3(k-x) \leq 12\tag{2}]\\
\Longleftrightarrow~& \exists x [x \geq 0 \land k \geq x \land x \leq 8-k \land 3k-12 \leq x]\\
\Longleftrightarrow~& \exists x [(x \geq 0 \land k \geq x \land x \leq 8-k \land 3k-12 \leq x)\land (3k-12<0 \lor 0 \leq 3k-12)]\tag{3}\\
\Longleftrightarrow~& \exists x [(x \geq 0 \land k \geq x \land x \leq 8-k \land 3k-12 \leq x \land 3k-12<0) \\
&\lor (x \geq 0 \land k \geq x \land x \leq 8-k \land 3k-12 \leq x \land 0 \leq 3k-12)]\tag{4}\\
\Longleftrightarrow~& \exists x [x \geq 0 \land k \geq x \land x \leq 8-k \land 3k-12 \leq x \land 3k-12<0] \\
&\lor \exists x[x \geq 0 \land k \geq x \land x \leq 8-k \land 3k-12 \leq x \land 0 \leq 3k-12]\tag{5}\\
\Longleftrightarrow~& \exists x [0 \leq x \leq k \land 3k-12 \leq x \leq 8-k \land 3k-12<0] \\
&\lor \exists x[0 \leq x \leq k \land 3k-12 \leq x \leq 8-k \land 0 \leq 3k-12]\\
\Longleftrightarrow~& (0 \leq k \land 3k-12 \leq 8-k \land 3k-12<0) \\
&\lor (0 \leq k \land 3k-12 \leq 8-k \land 0 \leq 3k-12)\tag{6}\\
\Longleftrightarrow~& (0 \leq k \land k \leq 5 \land k < 4) \lor (0 \leq k \land k \leq 5 \land 4 \leq k)\\
\Longleftrightarrow~& 0 \leq k < 4 \lor 4 \leq k \leq 5\\
\Longleftrightarrow~& 0 \leq k \leq 5
\end{align*}

したがって,最大値\(5\),最小値\(0\).

\((1)\)は式の主張そのままなのですが,慣れないとこの言い換えが一番難しいかも知れません.この記事と同じ考え方です.
\((2)\)は存在記号の処理
\((3)\)は恒真条件\(3k-12<0 \lor 0 \leq 3k-12\)の追加
\((4)\)は分配法則
\((5)\)は存在記号の分配
\((6)\)はこちらの記事

…と,この解法はもはや完全に趣味ですね^^;大人しく教科書と同じく線型計画法で解いた方が明快でスマートだと思います.しかし,この解法のおもしろポイントは絵に頼らない(数直線はイメージしますが…)で論理を’計算’する感覚で機械的に答えにたどりつく,という点です(以前紹介した軌跡の問題と同じ).視覚的に解く以外にも,こういった論理だけでゴリゴリ攻める姿勢も身に付けておいても決して無駄にはならないと思います.

ちなみに教科書の解法(線型計画法)は\((\ast)\)の段階で視覚化を考えた,と考えられます.ですからいずれの解法にしても\((1)\)の言い換えは本来教科書レベルであっても必要なものだと思います.例によって「解ければいいや」で覚えて済ましがちですけどね.

\(p \rightarrow q \Longleftrightarrow \overline{p}\lor q\)

極めてよく使う同値変形\[p \rightarrow q \Longleftrightarrow \overline{p}\lor q\]を確認してみましょう.真理値表を書いて調べてみます.実際に紙の上で調べる際の手順を再現してみます(一緒に書いてみてくださいね).

まず,命題\(p\)と命題\(q\)の真偽の組合せは以下のように\(2\times 2\)通りあります.


次に,\(p \rightarrow q\)について調べたいので,最上行にそれを書きこみましょう.\(\rightarrow\)の定義から,その真理値は以下のように書けます(\(p\)が真で\(q\)が偽であるときのみ,\(p \rightarrow q\)は偽であるのでした).


次に,調べたい\(\overline{p}\lor q\)を同じく最上行に書き込みます.


いきなり\(\overline{p}\lor q\)の真理値を書き込むのは難しいので,順を追って書き込むことにします.まずは\(\overline{p}\)から.これは簡単ですね.定義により,次のように書き込めます.


次に\(q\).これはそのまま.


いよいよ\(\overline{p}\lor q\)の真理値.\(\lor\)の定義により,


さて,\(p \rightarrow q\)と\(\overline{p}\lor q\)の真理値をながめてみましょう.真理値が一致しています.すなわちこの二つの命題は同値であることが確認できます.

※ 本来ならば,\(p,~\overline{p},~\overline{p}\lor q\)の真理値はそれぞれ別々の列に書くのが正しい(と思う)のですが,面倒なので上のように略記しています.

平行移動の公式

平行移動の公式
\(y=ax^2\)のグラフを,\(x\)軸方向に\(p\),\(y\)軸方向に\(q\)だけ平行移動した放物線は\[y=a(x-p)^2+q\]である.

この公式を教科書ではどのように説明しているかというと…

\(y=2x^2,~y=2x^2+3\)という具体例を持ち出してこの二者の関係を調べて(表または実際にグラフを描き),そこから\(y=2x^3+3\)のグラフは,\(y=2x^2\)のグラフを\(y\)軸方向に\(3\)だけ平行移動したものである,と結論し,
\[\downarrow\]
\(y=2x^2,~y=2(x-3)^2\)という具体例を持ち出し,表からこの二者の関係を調べて\(y=2(x-3)^3\)のグラフは,\(y=2x^2\)のグラフを\(x\)軸方向に\(3\)だけ平行移動したものである,と結論し,
\[\downarrow\]
そしてこの二つから上の公式を結論しています(詳しくはお手持ちの教科書参照).

この公式に限らず,高校の教科書は\[\textbf{具体例}\rightarrow\textbf{一般論}\]という書き方をしています.「この場合はこうだよね~,あの場合もこうだよね~,ということは一般にこう言えるよね~」という論法ですね.これで「ああなるほど!」と思えればいいんでしょうけど,なんか騙された気がするひとも少なくないはず.実際,数学を学ぶ姿勢としてはこれだけでは納得できない(しない)方がむしろよいと思います.二,三の例が正しいからとしって他の例も正しいとは限りませんからね.

というわけで証明(※注意 pdfファイルです)

いわゆる「教科書通り」にやるとこういったことを飛ばすことになるんですが,それが「数学を勉強している」ことになるんでしょうか…?もっとも,こういった話はテストに出ない(出せない)わけですからやったところでスコアにはならない.その意味においてはやる意味がない,のかもしれませんが….でも,天下り的に与えられた解決策をただ覚えるだけではないある意味メタ的な能力を培うことも数学を学ぶ重要な意義のひとつだと思うんですが.まあ,教える側,教わる側共々様々な事情・制約がありますから,難しい問題です.

 

\(f(g(x))g'(x)\)の不定積分

\[\displaystyle \int f(g(x))g'(x) dx=\int f(u) du \quad\text{ただし,}g(x)=u\]

教科書では,この公式の下で,次のような問題と解答を用意しています.

問題 次の不定積分を求めよ.
\[\displaystyle \int x\sqrt{x^2+1}dx\]

引用元:『高等学校 数学Ⅲ』数研出版

\(x^2+1=u\)とおくと\(2xdx = du\)

\begin{align*}
\displaystyle \int x \sqrt{x^2+1}dx &= \frac{1}{2}\int \sqrt{x^2+1}\cdot 2x dx\\
\displaystyle &= \frac{1}{2}\int \sqrt{u} du=\cdots\\
\displaystyle &=\frac{1}{3}(x^2+1)\sqrt{x^2+1}+C
\end{align*}

引用元:『高等学校 数学Ⅲ』数研出版

 

置換してますね.

ところで,\(\int f(u) du\)って\(f(u)\)の原始関数なんだから,上の公式は
\begin{align*}
\displaystyle \int f(g(x))g'(x) dx&=\int f(u) du \quad\text{ただし,}g(x)=u\\
\displaystyle &=F(u) + C\quad\text{ただし,}g(x)=u\\
\displaystyle &=F(g(x)) + C\\
\end{align*}

と変形して,

\[\displaystyle \int f(g(x))g'(x) dx = F(g(x)) + C\]

とも書けますね.というか,これを公式としたほうが良くない…?そうすれば「被積分関数が\(f(g(x))g'(x)\)という形をしていれば,\(f(\quad)\)の原始関数を求めて,その’中身’である\(g(x)\)をそのまま放り込めばいい」という簡単な使い方に変わると思うんですが….

あと教科書の解説だと全ッ然強調してないのですが,この公式が使えることにそもそもどうやって気付くのか?が実用(受験)上では極めて重要です.たとえこの公式を知識として持っていても気付かなければ使おうという発想に至りませんからね.気付くためのポイントは被積分関数に\(g(x)\)と\(g'(x)\)という二人がいるかどうか?です.この「\(g,~g’\)」が見つかったら,まずこの公式のタイプだと思って間違いないでしょう.そして見つかった\(g(x)\)と\(g'(x)\)のうち,\(g(x)\)を\(X\)などとおいて浮かび上がってくる関数が\(f(X)\)です.そしてその\(f(X)\)の原始関数(の1つ)さえ見つけらればこの積分計算はそれで終わりです.

上の例でやってみましょう.\(x^2+1\)と\(x\)の間にその\(g,~g’\)関係がありそうですね.でも惜しいことに\(x^2+1\)を微分すると\(2x\)です.今あるのは\(x\)だからちょっと違う.まあでも,係数の違いは微調整して\(x=\frac{1}{2}\cdot 2x\)と思っておけばいいでしょう.これで\(g(x)\)が見つかりました.これを\(X\)とおいてその部分を眺めてみましょう.すると\(\sqrt{X}=X^{\frac{1}{2}}\)となります.これが知りたかった\(f(X)\)です.あとはこれの原始関数(の1つ)を求めればいい.\[\frac{1}{\frac{1}{2}+1}X^{\frac{1}{2}+1}=\frac{2}{3}X^{\frac{3}{2}}\]
あとは\(\frac{2}{3}(\quad)^{\frac{3}{2}}\)にもともとあった\(g(x)=x^2+1\)を放り込んで\(\frac{1}{2}\cdot\frac{2}{3}(x^2+1)^{\frac{3}{2}}\).たったこれだけで終了.置換などする必要がない.ちなみに先頭の\(\frac{1}{2}は\)先ほど\(g'(x)\)を\(\frac{1}{2} \cdot 2x\)と微調整しておいてときの\(\frac{1}{2}\)です.以上解答としてまとめると

\begin{align*}
\displaystyle \int x \sqrt{x^2+1}dx &= \frac{1}{2}\cdot\frac{2}{3}(x^2+1)^{\frac{3}{2}}+C\\
&= \frac{1}{3}(x^2+1)^{\frac{3}{2}}+C
\end{align*}

ほぼ一行で終わります.「\(f,g,g’\)」タイプにおいてすべきことは\(f(\quad)\)を見つけ出しその原始関数(の1つ)を求めるだけです.教科書のようにダラダラと置換してはいけません.

逆手流(存在条件に言い換える)

\(y=x+1~(0 \leq x \leq 2)\)の値域をもとめよ.

この問題を2通りの解法で解いてみます.

(解法1)

定義域\(0 \leq x \leq 2\)に属する\(x\)に対応する\(y\)を調べます.

\(x=0\)に対応する\(y\)は?\(y=0+1=1\).
\(\hspace{35mm}\vdots\)
\(x=1\)に対応する\(y\)は?\(y=1+1=2\).
\(\hspace{35mm}\vdots\)
\(x=2\)に対応する\(y\)は?\(y=2+1=3\).

と調べていけば,\(1\leq y \leq 3\)と求まります.この頭の動きを図示すると,

のようになります.矢印の向きに注意してください.重要なのは次の(解法2)の考え方です.

(解法2)

頭の中で何でもいいから実数を思い浮かべてください.
ここでは例えば,
\[2\]
と頭に思い浮かべたとしましょう.

次に,その\(2\)に対応する\(x\)の値を求めてください.
\[2=x+1~\Longleftrightarrow~x=1\]
よって,\(1\)と分かります.

では,例えば\(4\)ならどうでしょう?\(3\)に対応する\(x\)を調べてみます.
\[4=x+1~\Longleftrightarrow~x=3\]
よって,\(3\)と分かります.

さて,今二つの例を挙げましたが,この二つの例の違いは何でしょうか?それは,

\(2\)に対応する\(x\)は,定義域にある(存在する).
\(4\)に対応する\(x\)は,定義域にはない(存在しない).

ということです.図示すると,

これを,それぞれ次のように解釈します.

「\(2\)に対応する\(x\)が定義域に存在する\(~\Longrightarrow~\)\(2\)は求める値域(の点の1つ)」
「\(3\)に対応する\(x\)が定義域に存在しない\(~\Longrightarrow~\)\(3\)は値域(の点の1つ)ではない」

また,「値域」「定義域」という言葉の定義から逆も成り立つのは明らかですから,結局,

「\(2\)に対応する\(x\)が定義域内に存在する\(~\Longleftrightarrow~\)\(2\)は求める値域(の点の1つ)」
「\(3\)に対応する\(x\)が定義域内に存在しない\(~\Longleftrightarrow~\)\(3\)は値域(の点の1つ)ではない」

と言えます.したがって,「\(y=2\)は値域上の点だが\(y=3\)は値域上の点ではない」と分かります.

以上の考え方(頭に何か数字を思い浮かべ,その数に対応する\(x\)を調べ,それが定義域内にあるかどうかを調べる)を用いて他の点についても調べてみましょう.色々な点を頭に思い浮かべて….\(4,~1,~1.5,~0.5,~5,~\frac{7}{2},~3,~\frac{5}{2},~-\frac{1}{2},~-1\cdots\)

\(4\)に対応する\(x\)は?
\(3\)です.\(3\)は定義域の点ではないので,値域の点ではありません.すなわち,
「\(4\)に対応する\(x\)が定義域に存在しない\(~\Longleftrightarrow~\)\(4\)は求める値域(の点の1つ)ではない」

\(1\)に対応する\(x\)は?
\(0\)です.\(0\)は定義域の点なので,値域の点のひとつです.すなわち,
「\(1\)に対応する\(x\)が定義域に存在する\(~\Longleftrightarrow~\)\(1\)は求める値域(の点の1つ)である」

\(\frac{3}{2}\)に対応する\(x\)は?
\(\frac{1}{2}\)です.\(\frac{1}{2}\)は定義域の点なので,値域の点のひとつです.すなわち,
「\(\frac{3}{2}\)に対応する\(x\)が定義域に存在する\(~\Longleftrightarrow~\)\(\frac{3}{2}\)は求める値域(の点の1つ)である」

\(\frac{1}{2}\)に対応する\(x\)は?
\(-\frac{1}{2}\)です.\(-\frac{1}{2}\)は定義域の点ではないので,値域の点ではありません.すなわち,
「\(\frac{1}{2}\)に対応する\(x\)が定義域に存在しない\(~\Longleftrightarrow~\)\(\frac{1}{2}\)は求める値域(の点の1つ)ではない」
\(\hspace{80mm}\vdots\)

と調べていけば,徐々に欲しい値域らしきものが求まっていくことが想像できると思います.
しかし,「数を頭に思い浮かべて~」とは言うものの思い浮かべ得る点は当然ながら無限です.その無限の数に対し上の考察を無限回行うわけにはいきません.そこでどうするか?文字を使いましょう.頭に思い浮かべ得る数の代表の文字として\(k\)を用います.そして上と同様の同値変形を行います.すなわち,
\[\text{\(k\)は求める値域(の点の1つ)である\(~\Longleftrightarrow~\)\(k\)に対応する\(x\)が定義域内に存在する}\]
さらに同値変形を続けて,
\[
\begin{align*}
&\text{\(k\)は求める値域(の点の1つ)である}\\
\Longleftrightarrow~&\text{\(k\)に対応する\(x\)が定義域に存在する}\\
\Longleftrightarrow~&\text{\(k=x+1\)をみたす\(x\)が定義域に存在する}\\
\Longleftrightarrow~&\text{\(x=k-1\)をみたす\(x\)が定義域に存在する}\\
\Longleftrightarrow~&\text{\(x=k-1,~0 \leq x \leq 1\)をみたす\(x\)が存在する}\\
\Longleftrightarrow~&0 \leq k-1 \leq 1\\
\Longleftrightarrow~&1 \leq k \leq 2
\end{align*}
\]
よって求める値域が\(1 \leq k \leq 2\)と求まります.

今回は簡単な値域の問題でしたので,「こんな面倒なことするくらいなら(解法1)のほうがいいだろ」と思うかもしれません.が,この考え方は値域の問題ばかりではなく,軌跡や領域の問題において根幹となる重要な考え方になります.

以上の解法(考え方)「存在条件に同値変形して処理」するこの手法を,雑誌「大学への数学」では「逆手流」と名付けています.記事のタイトルはこの名称を使わせて頂きました.

また,上の論理式において「\(k\)は求める値域(の点の1つ)である」を「\(k\in \text{値域}\)」と表し,さらに全称記号と存在記号を用いて記述すると以下のようになります.

\[
\begin{align*}
&k \in \text{値域}\\
\Longleftrightarrow~&\exists x \big[\text{\(k\)に対応する\(x\)が定義域上}\big]\\
\Longleftrightarrow~&\exists x \big[\text{\(k=x+1\)をみたす\(x\)が定義域上}\big]\\
\Longleftrightarrow~&\exists x \big[\text{\(x=k-1\)をみたす\(x\)が定義域上}\big]\\
\Longleftrightarrow~&\exists x \big[\text{\(x=k-1 \land ~0 \leq x \leq 1\)}\big]\\
\Longleftrightarrow~&0 \leq k-1 \leq 1\\
\Longleftrightarrow~&1 \leq k \leq 2
\end{align*}
\]

「でない」「かつ」「または」「ならば」の定義

最初に「命題」「条件」という言葉の確認から.

命題:正しいか正しくないかを一意的に判定できる主張
条件:変数(変項ともいいます)を含む命題

これらは高校生は数学Ⅰで既習だと思います.

以下,\(p,~q\)を命題とします.\(\overline{p},~p\land q,~p \lor q,~p\rightarrow q\)を改めて定義します.

定義

\(p\land q\)
\(p\)と\(q\)が両方真のときのみ真で,その他の場合はすべて偽となるような命題.この命題を「\(p\)かつ\(q\)」と呼び,\(p \land q\)と表す.

\(p \lor q\)
\(p\)と\(q\)が両方偽ときのみ偽で,その他の場合はすべて真となるような命題.この命題を「\(p\)または\(q\)」と呼び,\(p \land q\)と表す.

\(\overline{p}\)
\(p\)が真のときに偽で\(p\)が偽のときに真となるような命題.この命題を「\(p\)でない」あるいは「\(p\)の否定」と呼び,\(\overline{p}\)あるいは\(\lnot{p}\)と表す.

\(p\rightarrow q\)
\(p\)が真で\(q\)が偽のときのみ偽で,その他の場合はすべて真となるような命題.この命題を「\(p\)ならば\(q\)」と呼び,\(p\rightarrow q\)と表す.

上が\(p\land q,~p \lor q,~\lnot p,~p\rightarrow q\)の定義です.…が,とても見にくいですね.そこで以下のような表でまとめてみます.Tは真(True)を,Fは偽(False)を表すとします.


大分見やすくなりました.これを,「真理表(または真理値表)」と呼びます.以後,\(p\land q,~p \lor q,~\lnot p,~p\rightarrow q\)を上の表に従う命題とし,これらの表に基づき各種命題の真偽判定していくことになります.

(補足1)
ところで,この定義の中で唯一違和感があるとしたら,「『\(p\)ならば\(q\)』は,\(p\)が偽のとき\(q\)の真偽に関わらず真とする」という点かと思います.定義なんだからつべこべ言わず受け入れましょう,と言いたいところですが(「定義する」と言われたら受け入れるしかない?),あえて感覚的な説明をするとしたら,次のように考えると受け入れやすいかもしれません:

とある家庭で父親が息子に言いました「テストで満点をとったら,スマホを買ってあげるよ」と.

このとき,次の4つのケースが考えられます.

    1. 息子が満点をとり,父親がスマホを買ってあげる
    2. 息子が満点をとり,父親がスマホを買ってあげない
    3. 息子は満点をとれず,父親がスマホを買ってあげる
    4. 息子は満点をとれず,父親がスマホを買ってあげない

このうち,父親が「約束を守った・破った」ことになるのはどれかを考えてみます.1.これは父親はきちんと約束を守っています.2.これは父親は明らかに約束を破っていますね.さて,3と4についてはこのように考えられないでしょうか:

そもそも息子が満点を取ってない以上,父親が買ってあげようとも(満点とれなかったのにラッキーですね)買ってあげずとも,約束を破ったことにはならない,すなわち約束を守ったことになる.

このように考えると「ならば」を上のように定義することが感覚的に受け入れられるのではないでしょうか.

(補足2)
命題\[p \longrightarrow q\]
が真であることを,
\[p \Longrightarrow q\]
と表します.ですから,「\(p \Rightarrow q\)」は「\(p \rightarrow q\)が真である(成り立つ)」と読み替えられます.

同値変形の重要性2

論理式を記述する際,必要性だけで横着せずに,改行するごとに十分性まで考える,すなわち同値変形すればいいのです.

\[P_1\Longleftrightarrow P_2\Longleftrightarrow P_3\Longleftrightarrow\cdots \Longleftrightarrow P_n\]

このように変形すれば,行を追うごとに同値性を確認しているので,最後に逆を確認する必要がない.(★★)

このことに注意して再度解答を作成してみます.

【解答”】
\[\begin{align*}
&2-x=\sqrt{x}\\
\Longleftrightarrow&~(2-x)^2=x \land 2-x>0 \\
\Longleftrightarrow&~x^2-4x+4=x \land 2>x\\
\Longleftrightarrow&~x^2-5x+4=0 \land x<2\\
\Longleftrightarrow&~(x-4)(x-1)=0 \land x<2\\
\Longleftrightarrow&~(x=4 \lor x=1) \land x<2\\
\Longleftrightarrow&~(x=4 \land x<2) \lor (x=1\land x<2) \\
\Longleftrightarrow&~x=1\land x<2 \\
\Longleftrightarrow&~x=1
\end{align*}
\]

【解答”終】

このように同値変形を行えば,逆の考察をする必要がなく,解は\(x=1\)と自信をもって答えられます(参考:軌跡の問題を論理式で記述する

また,この解答のように論理記号\(\lor\)や\(\land\)やその分配法則を用いると簡潔に記述できます.論理記号の意味やその各種法則などの使い方も知っておくことは数学を学ぶ上で強力な武器(というかなくてはならない基礎体力)になります.ですから余力のある人は受験数学範囲の(記号)論理学を学んでおくといいと思います.

ちなみに,数学Ⅲを履修している人は,無理関数のグラフを描くことで視覚的に不適解を排除することができるでしょう.そっちの解答の方が直観的で手間もなく,実戦的だと思います.しかし,「絵」による定性的判断は時に誤った結論を導くことがあります.一方,論理による定量的判断は絶対です.その意味で,論理を味方にしておくことは極めて重要と個人的に思います.

というわけで,(★)の考え方だけでなく,(★★)の考え方も攻め方として持っておくとよいでしょう.それぞれにメリット,デメリットがあります.どちらか片方だけに固執するのではなく,状況に応じて攻め方を変えられるようになりたいものです.

相関係数

\(n\)個のデータ\(x_1,x_2,\cdots,x_n\),\(y_1,y_2,\cdots,y_n\)(それぞれ平均を\(\mu,\lambda\)とする)の相関係数\(\rho(x,y)\)がなぜ$$-1\leq\rho(x,y)\leq1$$なのか,質問を受けたので,このブログでの数式表示の練習も兼ねて書いてみようと思います.

(証明)
天下り的ではあるが,まず,2つのベクトル$$\vec{u}=(x_1-\mu,x_2-\mu,\cdots,x_n-\mu),~\vec{v}=(y_1-\lambda,y_2-\lambda,\cdots,y_n-\lambda)$$を用意し,これらの内積を考える.すると,
$$
\begin{align}
\vec{u}\cdot\vec{v}&=(x_1-\mu)(y_1-\lambda)\cdots(x_n-\mu)(y_n-\lambda)\\
&=\sum_{k=0}^{n}(x_k-\mu)(y_k-\lambda)\\
\end{align}
$$
となる.他方,\(\vec{u}\cdot\vec{v}\)は,内積の公式(高校教科書では「定義」)より

$$
\begin{align}
\vec{u}\cdot\vec{v}&=\sqrt{(x_1-\mu)^2+(x_2-\mu)^2+\cdots+(x_n-\mu)^2}\sqrt{(y_1-\lambda)^2+(y_2-\lambda)^2+\cdots+(y_n-\lambda)^2}\cos\theta\\
&=\sqrt{\sum_{k=0}^{n}(x_k-\mu)^2}\sqrt{\sum_{k=0}^{n}(y_k-\lambda)^2}\cos\theta\\
\end{align}
$$

ゆえに,
$$\cos\theta=\frac{\vec{u}\cdot\vec{v}}{\sqrt{\sum_{k=0}^{n}(x_k-\mu)^2}\sqrt{\sum_{k=0}^{n}(y_k-\lambda)^2}}$$
を得る.\(-1\leq\cos\theta\leq1\)であるから,上式は
$$-1\leq\frac{\vec{u}\cdot\vec{v}}{\sqrt{\sum_{k=0}^{n}(x_k-\mu)^2}\sqrt{\sum_{k=0}^{n}(y_k-\lambda)^2}}\leq1$$
である.前半に得た式をこの不等式に代入すれば,
$$-1\leq\frac{\sum_{k=0}^{n}(x_k-\mu)(y_k-\lambda)}{\sqrt{\sum_{k=0}^{n}(x_k-\mu)^2}\sqrt{\sum_{k=0}^{n}(y_k-\lambda)^2}}\leq1$$
分母分子を\(\frac{1}{n}\)で割って,
$$-1\leq\frac{\frac{1}{n}\sum_{k=0}^{n}(x_k-\mu)(y_k-\lambda)}{\frac{1}{n}\sqrt{\sum_{k=0}^{n}(x_k-\mu)^2}\sqrt{\sum_{k=0}^{n}(y_k-\lambda)^2}}\leq1\\
-1\leq\frac{\frac{1}{n}\sum_{k=0}^{n}(x_k-\mu)(y_k-\lambda)}{\sqrt{\frac{1}{n}\sum_{k=0}^{n}(x_k-\mu)^2}\sqrt{\frac{1}{n}\sum_{k=0}^{n}(y_k-\lambda)^2}}\leq1$$
すなわち
$$-1\leq\frac{Cov(x,y)}{\sigma(x)\sigma(y)}\leq1$$
よって,$$-1\leq\rho(x,y)\leq1$$を得る.(証明終)

結構疲れます^^;
ベクトルを使って統計の性質を証明するなんて,面白いです.