「定義にしたがう」ということ

数学は,論理によって演繹的に記述される学問です.したがって,何かしら判断を下したいときは,以前の取り決め;定義(やその取り決めから得られた他の結論;定理)を思い出し,それらから淡々と判断を下していけばいいだけのことです.この一連の流れを「定義に従って・・・」とよく言われます.

例えるならば,スポーツで判定に迷う際どいプレーがあったとします.その際,下すべき判定は何に依るでしょうか.過去の判例でしょうか.選手や観客の投票でしょうか.その場の雰囲気でしょうか.いいえ,単純に「ルール」でしょう.それと同じです.

この「定義にしたがって判断する」という姿勢は数学を学ぶ上では「当たり前」なのですが,中学生だけでなく高校生もこれを意識している人は少ない気がします.

【例1】
教科書の「集合」において,\[A=B\text{が成り立つことは,} A\subset{B} \text{かつ}B\subset{A}\text{が成り立つことと同じである.}\]と書いてありますが,もしこれを証明せよ,と言われたらどうしますか.ほとんどの高校生は何をすべきか途方に暮れるのではないでしょうか.こんなとき考えるべきことは,\(A=B\)と\(A\subset{B}\)の定義に戻ることです;\(A=B\)は,\[\forall x [x\in{A}\Longleftrightarrow x\in{B}]\]と定義されています.他方,\(A\subset{B}\)と\(B\subset{A}\)はそれぞれ,\[\forall x [x\in{A}\Longrightarrow x\in{B}],~\forall x [x\in{B}\Longrightarrow x\in{A}]\]と定義されています.したがって,\(A\subset{B}\land B\subset{A}\)とは,\[\forall x [x\in{A}\Longrightarrow x\in{B}]\land\forall x [x\in{B}\Longrightarrow x\in{A}]\]ということですから結局\[\forall x [x\in{A}\Longleftrightarrow x\in{B}]\]となって上で示した\(A=B\)の定義と一致します.

【例2】
「マイナス\(\times\)マイナスはプラスになる」ことをどうやって説明(証明)しますか.ここで,中学で習うような「後ろ向いて後ろを向くと前を向くから」とか「否定文の否定は肯定文になるでしょ」とかいった説明は,説明のようで説明になっていない,いわば「誤魔化し」です(現実世界の現象が数学の世界の判断根拠にはならない!).これも,「定義にしたがって」淡々と証明すればいいだけです.まず,\(0\)と負数の定義を確認しましょう.\(0\)は,\[\forall x\in\mathbb{R} [x+a=a+x=a]\]を満たす数\(a\)として定義されました.この\(a\)を\(0\)と書くことにします.次に,この\(0\)に対して,\[\forall x\in\mathbb{R} [x+a=a+x=0]\]を満たす数\(a\)を,\(-x\)と書くと定義されています.つまり\[\forall x\in\mathbb{R}[x+(-x)=(-x)+x=0]\]この定義において,\(x\)は任意ですから,\(-x\)を代入することにします.すると,\[-x+(-(-x))=0\]が得られます.両辺に\(x\)を加えることで\[-(-x)=x\]が得られます.

【例3】
\[\int_a^bf(x)dx=-\int_b^af(x)dx\]はどうやって理解すればいいでしょう.これもやはり,定義にしたがえばいいだけです;まず,(高校教科書における)定積分の定義を思い出しましょう.それは,\[\int_a^bf(x)dx=F(b)-F(a)\]でした.したがって,
\[
\begin{align*}
\text{左辺}&=\int_a^bf(x)dx\\
&=F(b)-F(a)\\
&=-(F(a)-F(b))\\
&=-\int_b^af(x)dx=\text{右辺}
\end{align*}
\]

となってあっさり終わります.ちなみに,定積分は「リーマン和の極限」と定義した方が直観的理解のためにも望ましいと個人的には思います.よくある「定積分は足し算だから云々」という説明は,この定義を意識した説明だと思いますが,しかし定積分を「原始関数の差」と定義した以上,上記のように説明するのが論理的です.

・・・このように,「判断に困ったらとりあえず定義に戻る」という姿勢は数学ではとても大事です.「問題が解ければいい」「点数さえ取れればいい」といった姿勢ではこういった視点はまず身につかないと思います.だけれども,こういった演繹的な考え方を身に付けることこそ数学を学ぶひとつの意義だと思うし,また,ハイレベルな問題を解けるようには,こういった思考を日常的に行うことが一見遠回りのように見えても結果的な近道であるような気がします.

© 2024 佐々木数学塾, All rights reserved.