「存在することを示せ」と言われたら 

(数学A,数学B)

「ツチノコの存在を証明しろ」と言われたら,どうすればいいか。
…それは簡単,ツチノコを捕まえて連れてくればOK!

ここで,数学Aの「整数の性質」で登場した「整数の割り算」について見てみます。

一般に,次のことが成り立つ。

整数\(a\)と正の整数\(b\)について\[a=qb+r,~0\leq r < b\]となる整数\(q,r\)はただ\(1\)通りに定まる。

『高等学校 数学A』数研出版

 
「定まる」とは要は「存在する」ということですが,いずれにせよ初めて学んだときは感覚的に当たり前すぎて疑問にすら思わなかったと思います。しかし,いざこれを証明しろと言われたらどうしたらいいでしょう…?

ずばり,実際にもってこよう!(以下では簡単のために\(a\geq 0\)とし,また一意性の部分はカットします)

\(a,b\)を\(a \geq 0,b>0\)を満たす整数とする.このとき,
\[a=qb+r,~0\leq r < b\tag{\(\ast\)}\]を満たす整数\(q,r\)が存在することを示せ.

証明

\(b(>0)\)を固定して,任意の\(a(\geq 0)\)について主張が成り立つことが示せればよい.

\(a < b\)であるとき:
\(q=0,r=a\)とすればよい.

\((0 <)b \leq a\)であるとき:
数学的帰納法で示す.\(a\)より小さい非負の整数で主張が成り立つとする.\(b>0\)より\(b \leq a \Leftrightarrow 0 \leq a-b (< a)\)であるから,\(a-b\)は\(a\)より小さい非負の整数である.したがって仮定により,\begin{align*}
&\exists q^{\prime},r^{\prime}\in \mathbb{Z}[a-b = q^{\prime}b+r^{\prime},0 \leq r^{\prime} \leq b]\\
\Longleftrightarrow~&\exists q^{\prime},r^{\prime}\in \mathbb{Z}[a = (q^{\prime}+1)b+r^{\prime},0 \leq r^{\prime} \leq b]
\end{align*}よって\((\ast)\)を満たす\(q,r\)として\(q=q^{\prime}+1,~r=r^{\prime}\)ととればよい.
これで,\(a\)より小さい非負の整数で主張が成り立てば,\(a\)でも主張が成り立つことが分かった.
\(a=0\)のときは,\(q=0,r=0\)とすればよい.

以上により任意の\(a(\geq 0)\)に対して\((\ast)\)を満たす\(q,r \in \mathbb{Z}\)が存在することが示せた.

証明終

現物もってくれば文句ないだろっていう。

こんなところで数学Bで学んだ(学ぶ)数学的帰納法が登場するのも面白いですね。しかも直前の番号のみを仮定する教科書の定番タイプではなく,直前以前の番号すべてを仮定するタイプの帰納法です。

パズルみたいな学校数学もまあまあ面白いけど,個人的にはこういう緻密な調査の方がすきだなあ。点数にならないけど。

 

三角不等式

次の不等式を証明せよ.
\[\displaystyle \sum_{i=1}^{n}|x_i+y_i|^p \leq \sum_{i=1}^{n}|x_i||x_i+y_i|^{p-1}+\sum_{i=1}^{n}|y_i||x_i+y_i|^{p-1}\]

高校数学の範囲的には数学Ⅰ(絶対値),数学Ⅱ(不等式の証明,三角不等式),数学B(シグマ計算)あたりかな?

証明
\begin{align*}
|x_i+y_i|^p = &|x_i+y_i||x_i+y_i|^{p-1} \\
\leq &(|x_i|+|y_i|)|x_i+y_i|^{p-1}\\
= &|x_i||x_i+y_i|^{p-1}+|y_i||x_i+y_i|^{p-1}
\end{align*}

この不等式の\(i\)を\(i=1 \cdots n\)とかえて辺々加えて\[\displaystyle \sum_{i=1}^{n}|x_i+y_i|^p \leq \sum_{i=1}^{n}|x_i||x_i+y_i|^{p-1}+\sum_{i=1}^{n}|y_i||x_i+y_i|^{p-1}\]を得る.

証明終

Minkowskiの不等式の証明で使うのでここにnoteしておきます。

高校数学の証明問題としても使えると思いますが三角不等式って高校数学ではそれほど使用頻度が高くないので意外と詰まっちゃう高校生も多い気がします。

外積の分配法則

\[\overrightarrow{a}\times(\overrightarrow{b}+\overrightarrow{c})=\overrightarrow{a}\times\overrightarrow{b}+\overrightarrow{a}\times\overrightarrow{c}\]

\(\overrightarrow{a}\times(\overrightarrow{b}+\overrightarrow{c})=\overrightarrow{a}\times\overrightarrow{b}+\overrightarrow{a}\times\overrightarrow{c}\)を証明します。

図のように,空間上に\(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\)があったとしましょう。

\(\overrightarrow{a}\)の始点を通り,\(\overrightarrow{a}\)に垂直な平面を\(\alpha\)とし,\(\overrightarrow{b},\overrightarrow{c}\)からその平面\(\alpha\)への正射影ベクトルをそれぞれ\(\overrightarrow{b^{\prime}},\overrightarrow{c^{\prime}}\)とおきます。

このとき,下図のような位置関係があることに注意しておきます。

図を動かしてイメージしてみてください(右クリックを押しながらドラッグすると動きます)。

さて,このとき,\begin{align*}
\overrightarrow{a}\times(\overrightarrow{b}+\overrightarrow{c})=&\overrightarrow{a}\times(\overrightarrow{b^{\prime}}+\overrightarrow{c^{\prime}})\tag{1}\\
=&\overrightarrow{a}\times \overrightarrow{b^{\prime}}+\overrightarrow{a}\times \overrightarrow{c^{\prime}}\tag{2}\\
=&\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}\tag{3}
\end{align*}が言えます。順にみていきます。

\((1)\)について:
\(\overrightarrow{a},\overrightarrow{b}+\overrightarrow{c},\overrightarrow{b^{\prime}}+\overrightarrow{c^{\prime}}\)は同一平面上にありますから,まず\(\overrightarrow{a}\times(\overrightarrow{b}+\overrightarrow{c})\)と\(\overrightarrow{a}\times(\overrightarrow{b^{\prime}}+\overrightarrow{c^{\prime}})\)の向きは同じであることが分かります。そして,\(\overrightarrow{a}\)と\(\overrightarrow{b}+\overrightarrow{c}\)が作る平行四辺形の面積と,\(\overrightarrow{a}\)と\(\overrightarrow{b^{\prime}}+\overrightarrow{c^{\prime}}\)が作る平行四辺形の面積は等しいので(等積変形),\(\overrightarrow{a}\times(\overrightarrow{b}+\overrightarrow{c})\)と\(\overrightarrow{a}\times(\overrightarrow{b^{\prime}}+\overrightarrow{c^{\prime}})\)の大きさも等しい。したがって\[\overrightarrow{a}\times(\overrightarrow{b}+\overrightarrow{c})=\overrightarrow{a}\times(\overrightarrow{b^{\prime}}+\overrightarrow{c^{\prime}})\tag{1}\]です。

\((2)\)について:
\(\overrightarrow{a}\times \overrightarrow{b^{\prime}},\overrightarrow{a}\times \overrightarrow{c^{\prime}},\overrightarrow{a}\times(\overrightarrow{b^{\prime}}+\overrightarrow{c^{\prime}})\)の向きはどれも\(\overrightarrow{a}\)を軸に\(90^{\circ}\)回転させた向きになります。そして大きさは(どれも\(\overrightarrow{a}\)と直交していることに注意すれば)それぞれ\(|\overrightarrow{a}||\overrightarrow{b^{\prime}}|,|\overrightarrow{a}||\overrightarrow{c^{\prime}}|,|\overrightarrow{a}||\overrightarrow{b^{\prime}}+\overrightarrow{c^{\prime}}|\),すなわちどれも自分の大きさを\(|\overrightarrow{a}|\)倍したものです。

(上の図は見やすさのため\(\overrightarrow{a}\times(\overrightarrow{b^{\prime}}+\overrightarrow{c^{\prime}})\)だけ図示)これを,真上から見たものが下の図がです。

この図から,\[\overrightarrow{a}\times(\overrightarrow{b^{\prime}}+\overrightarrow{c^{\prime}})=\overrightarrow{a}\times\overrightarrow{b^{\prime}}+\overrightarrow{a}\times\overrightarrow{c^{\prime}}\tag{2}\]であることが分かります。

\((3)\)について:
\(\overrightarrow{a},\overrightarrow{b},\overrightarrow{b^{\prime}}\)は同一平面上にありますから,まず\(\overrightarrow{a}\times\overrightarrow{b}\)と\(\overrightarrow{a}\times\overrightarrow{b^{\prime}}\)の向きは同じであることが分かります。そして,\(\overrightarrow{a}\)と\(\overrightarrow{b}\)が作る平行四辺形の面積と,\(\overrightarrow{a}\)と\(\overrightarrow{b^{\prime}}\)が作る平行四辺形の面積は等しいので(等積変形),\(\overrightarrow{a}\times \overrightarrow{b}\)と\(\overrightarrow{a}\times\overrightarrow{b^{\prime}}\)の大きさも等しい。したがって\[\overrightarrow{a}\times \overrightarrow{b}=\overrightarrow{a}\times \overrightarrow{b^{\prime}}\tag{3}\]です。

\(\overrightarrow{a}\times \overrightarrow{c}=\overrightarrow{a}\times \overrightarrow{c^{\prime}}\)も同様です。

以上により証明が完了しました。

点と平面の距離

平面\(ax+by+cz+d=0\)と点\(P(x_0,y_0,z_0)\)との距離の公式を作ってみます。

平面\(ax+by+cz+d=0\)と点\(P(x_0,y_0,z_0)\)との距離は\[\frac{|ax_0+by_0+cz_0+d|}{\sqrt{a^2+b^2+c^2}}\]で与えられる.

証明

\((a_0,b_0,c_0)\)を平面上の点とする.点\(P\)から平面へおろした足を\(H\)とおけば,線分\(PH\)の長さは正射影ベクトル\((\overrightarrow{AP}\cdot \overrightarrow{e})\overrightarrow{e}\)の大きさと等しい.したがって
\begin{align*}
PH=&\left|(\overrightarrow{AP}\cdot \overrightarrow{e})\overrightarrow{e}\right|\\
=&\left|\left(\begin{array}{c} x_0-a_0 \\ y_0-b_0 \\ z_0-c_0 \end{array}\right)\cdot\frac{1}{\sqrt{a^2+b^2+c^2}}\left(\begin{array}{c} a \\ b \\ c \end{array}\right)\right|\\
=&\frac{|a(x_0-a_0)+b(y_0-b_0)+c(z_0-c_0)|}{\sqrt{a^2+b^2+c^2}}\\
=&\frac{|ax_0+by_0+cz_0-aa_0-bb_0-cc_0|}{\sqrt{a^2+b^2+c^2}}\\
\end{align*}\((a_0,b_0,c_0)\)は平面上の点なので,\(aa_0+bb_0+cc_0+d=0\)すなわち\(d=-aa_0-bb_0-cc_0\)が成り立つことから\[\frac{|ax_0+by_0+cz_0+d|}{\sqrt{a^2+b^2+c^2}}\]を得る.

証明終

おもしろポイント:
・お馴染み点と直線の距離の公式\(\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}\)に似てること
・なんかすごいかんたんに導けること
正射影ベクトルきもちいい

平面の方程式

平面の方程式を作ってみます。

ここでは,平面はその平面の垂直方向とその平面が通る1点が定まれば決定することに着目します。平面の法線ベクトルを\(\overrightarrow{n}=(a,b,c)\),平面が通る1点の座標を\(A(a_0,b_0,c_0)\),平面上の任意の点を\(P(x,y,z)\)とおくことにします。\begin{align*}
&\overrightarrow{AP} \cdot \overrightarrow{n} = 0\\
\Longleftrightarrow~ &\left(\begin{array}{c} x-a_0 \\ y-b_0 \\ z-c_0 \end{array}\right)\cdot\left(\begin{array}{c} a \\ b \\ c \end{array}\right)= 0\\
\Longleftrightarrow~ &a(x-a_0)+b(y-b_0)+c(z-c_0)=0\\
\Longleftrightarrow~ &ax+by+cz-aa_0-bb_0-cc_0=0\\
\Longleftrightarrow~ &ax+by+cz+d=0
\end{align*}よって,平面の方程式は\(ax+by+cz+d=0\)と書けること,そしてその法線ベクトルが\((a,b,c)\)で表されることが分かりました(途中,\(-aa_0-bb_0-cc_0=d\)とおきました)。直線の方程式が\(ax+by+c=0\)と書けること,そしてその法線ベクトルが\((a,b)\)で表されることにそっくりですね。

斜交座標系

\(\Delta ABC\)において,辺の中点を\(C\),辺\(OB\)を\(2:1\)に内分する点を\(D\)とし,線分\(AD\)と線分\(BC\)の交点を\(P\)とする.\(\overrightarrow{OA}=\overrightarrow{a},\overrightarrow{OB}=\overrightarrow{b}\)とするとき,\(\overrightarrow{OP}\)を\(\overrightarrow{a},\overrightarrow{b}\)を用いて表せ.

定期考査に必ず出題される定番中の定番の問題です。教科書のような例の解法のほかにも様々な解法が考えられますが,個人的には以下のように考えるのが好きです。

解答

\(\overrightarrow{a},\overrightarrow{b}\)を基底とする斜交座標系を考える.その座標系における直線\(AD\)の方程式は\(x+\frac{3}{2}y=1\),直線\(BC\)の方程式は\(2x+y=1\)(下図参照).この2式を連立して\(x=\frac{1}{4},y=\frac{1}{2}\).したがって\[\overrightarrow{OP}=\frac{1}{4}\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}\]を得る.

解答終

高校2年生の問題が,中学1年生レベルの単純な連立方程式の問題に帰着します。直線は\(y=ax+b\)だけじゃなく\(\frac{x}{a_0}+\frac{y}{b_0}=1\)(切片型)と書けることは常識にしておきましょう。

この教科書の超基本問題はこのように面白い解法がいくつかあって,教科書の解法だけで終わらせるにはもったいない問題。ゆっくり立ち止まって色々と学んでおきたい問題です。もちろん教科書の解法も重要(※)です。

※ 重要なんだけど問題はその学び方。この解法を「\(s:1-s\)とおいて\(t:1-t\)とおいて~」みたいなこの問題「特有の」手順として学ぶひとが多い。そんな頭の解法ストックに+1するだけの理解(暗記?)だけではなく,これはベクトル方程式と絡めた視点(ベクトル方程式を立てているという認識)をも学ぶべき。そうすればこの一連の手続きは「解法」なんて仰々しいものじゃない,極めて自然でかつ汎用性のある(=模試レベルでも使える)知識になります。

位置ベクトルの利用

座標空間において,\(3\)点\(A(0,1,1),B(2,2,3),C(4,0,2)\)を通る平面に関して,点\(P(9,1,1)\)と対称な点の座標を求めなさい.

(実用数学検定\(1\)級 計算技能検定)

数検の計算問題ですが,「対称点の座標が欲しい」というのは大学入試問題でもよく出会うシチュエーションだと思います.いろいろな解法が考えられますが,ここでは位置ベクトルを用いて求めてみます.作戦はこうです:

求める点の座標を\(P’\)とします.位置ベクトルの定義により,空間上の座標\(P’\)とベクトル\(\overrightarrow{OP’}\)の成分は1対1に対応してますから,\(\overrightarrow{OP’}\)を求まるということそれは空間上の座標\(P’\)が求まることに等しい.そこで\(\overrightarrow{OP’}\)を求めることにします.点\(P\)から平面上に下した垂線の足の座標を\(H\)とおけば,\(\overrightarrow{OP’}=\overrightarrow{OP}+2\overrightarrow{PH}\)とできます.\(\overrightarrow{PH}\)を求めます.

ここで,正射影ベクトル\((\overrightarrow{AP}\cdot\overrightarrow{e})\overrightarrow{e}\)は\(\overrightarrow{HP}\)に等しい(\(\overrightarrow{e}\)は平面に垂直な単位ベクトル,外積によって直ちに求まる).したがって\begin{align*}
\overrightarrow{OP’}=&\overrightarrow{OP}+2\overrightarrow{PH}\\
=&\overrightarrow{OP}-2(\overrightarrow{AP}\cdot\overrightarrow{e})\overrightarrow{e}
\end{align*}となる.\(\overrightarrow{AP}=\left(\begin{array}{c}9\\0\\0\end{array}\right)\),そして\(\overrightarrow{e}=\dfrac{1}{3}\left(\begin{array}{c}1\\2\\-2\end{array}\right)\)であるから,
\begin{align*}
\overrightarrow{OP’}=&\left(\begin{array}{c}9\\1\\1\end{array}\right)-2\left(\left(\begin{array}{c}9\\0\\0\end{array}\right)\cdot \dfrac{1}{3}\left(\begin{array}{c}1\\2\\-2\end{array}\right)\right)\dfrac{1}{3}\left(\begin{array}{c}1\\2\\-2\end{array}\right) = \left(\begin{array}{c}7\\-3\\5\end{array}\right)
\end{align*}したがって求める座標は\((7,-3,5)\)と求まります.

「座標が欲しければ位置ベクトル調べればいいじゃん」というシンプルな発想で片付き,また未知数を設定する必要もなく,計算量も少ない.そして何よりその「(空間上の)座標を知りたい」なんて状況はそれこそ頻繁に出会うシチュエーションです(サイクロイド等の媒介変数表示,複素数の回転など).これが位置ベクトルの‘嬉しい点’であり,位置ベクトルを学ぶ意味だと思う.しかし教科書ではこれを強調しないし,教える側も教科書に右ならえ….が,受験生としては空間上の座標を求める際の強力な手法としてぜひ常識としてほしい手法の一つです.

階差数列

ここに数列\((a_n)_{n\in\mathbb{N}}\)があるとします.
\[a_1,~a_2,~a_3,~\cdots,a_n\]\(a_n\)を求めましょう.\(a_n\)を求めるためには,
と考えることで
\[
a_n=a_1+(a_2-a_1)+(a_3-a_2)+(a_4-a_3)+\cdots+(a_n-a_{n-1})
\]とかけることがわかります.ただし,この式は\(n=1\)のときは\(a_0\)が出現してしまい成り立たないので,\(n \geq 2\)のもとで成り立つ式であることに注意します.ここに現れる数列\((a_n-a_{n-1})_{n\in\mathbb{N}}\)を,階差数列と呼びます.この式を\(\sum\)記号を用いて少し変形すると
\begin{align*}
a_n=&a_1+(a_2-a_1)+(a_3-a_2)+(a_4-a_3)+\cdots+(a_n-a_{n-1})\tag{1}\\
=&a_1+\displaystyle \sum_{k=1}^{n-1}(a_{k+1}-a_{k})\tag{2}\\
=&a_1+\displaystyle \sum_{k=2}^{n}(a_k-a_{k-1})\\
=&a_1+\displaystyle \sum_{k=0}^{n-2}(a_{k+2}-a_{k+1})
\end{align*}などと変形できることも分かります.さらに,\((2)\)の\(a_{k+1}-a_{k}\)を\(b_k\)とおいたものが,教科書でもお馴染みの公式\[a_n=a_1+\displaystyle \sum_{k=1}^{n-1}b_k\tag{3}\]ですね.

さて,ここまでで見た式\((1),(2),(3)\)の中で覚えるべき式はどれでしょうか.一般的(教科書的)には,最終的な結果である\((3)\)だけでしょう.これを「公式」として覚えておいて,あとはこれを機械的に使うという人がほとんどかと思います.例えば,こういう問題

次の数列\((a_n)_{n \in \mathbb{N}}\)の一般項を求めよ.\[1,~3,~7,~13,~21,~\cdots\]

「あ,階差数列は\(b_n=2n\)だ!→公式!」と考え\[a_n = \displaystyle 1 + \sum_{k=1}^{n-1}2k \quad (n \geq 2)\]とすることと思います.他にも,

次の条件で表される数列\((a_n)_{n\in \mathbb{N}}\)の一般項を求めよ.\[a_1=1,~a_{n+1}-a_{n}=4^n\]

など.これもやはり「あ,階差数列だ!→公式!」と考え,
\[a_n=1+\displaystyle \sum_{k=1}^{n-1} 4^k \quad (n \geq 2)\]と計算することと思います.では,次はどうでしょう.大学入試問題です.

次の条件で表される数列\((a_n)_{n\in \mathbb{N}}\)の一般項を求めよ.
\[a_1=2,~(n-1)a_n=na_{n-1}+1 \quad (n=2,3,\cdots)\]

まずは両辺を\(n(n-1)\)で割って,
\[\frac{a_n}{n}=\frac{a_{n-1}}{n-1}+\frac{1}{n(n-1)}\]移項して,\(\frac{a_n}{n}=b_n\)とおくことで「階差」タイプに帰着します:
\[b_n-b_{n-1}=\frac{1}{n(n-1)}\]ここで,\((3)\)の結果だけを機械的に覚えていると,「あ,階差数列だ!→公式!」からの
\[b_n=b_1+\displaystyle \sum_{k=1}^{n-1} \frac{1}{k(k-1)} \quad (n \geq 2)\quad \text{※誤答}\]
という式になります.で,あれ?\(k=1\)で分母が\(0\)になるぞ?教科書ではうまくいったはずだが??まあその辺はゴニョゴニョ….

一般に,教科書で扱う例題・練習題のほとんどは親切(?)にも公式を機械的に使いさえすれば正答が得られる問題によって構成されています.でも,入試問題がそんな忖度をしてくれるとは限りません.実戦の場で,恐る恐る怪しい解答を一か八かで作るくらいなら,上で見たように,階差数列の成り立ちに立ち戻って確実な解答を作成しよう,と考えるべきです:

解答

\(n \geq 2\)のとき,\[b_n=b_1+(b_2-b_1)+(b_3-b_2)+(b_4-b_3)+\cdots+(b_n-b_{n-1})\]が成り立つ.この式を\(\sum\)記号を用いて表す.今着目している漸化式が\(b_n-b_{n-1}\)という形であるから,これが利用できるように,\(\sum\)の後ろは\(b_k-b_{k-1}\)という形で表すことにする.これに伴い,始まりの\(k\)は\(2\),終わりの\(k\)は\(n\)であることに注意して
\begin{align*}
b_n&=b_1+\displaystyle \sum_{k=2}^{n}(b_k-b_{k-1})\\
&=b_1+\displaystyle \sum_{k=2}^{n}\frac{1}{k(k-1)}\quad(n \geq 2)
\end{align*}と変形する.(以下略)

解答終

このように,結果である\((3)\)を機械的に使おうとするのではなく,その結果に至るまでの過程を再現しようという姿勢で式を作れば,必然的に正答に辿り着くはずです.というわけで,覚えるなら以下のように覚えるのがおすすめです:

\(n\geq 2\)のとき
\begin{align*}
a_n=&a_1+(a_2-a_1)+(a_3-a_2)+(a_4-a_3)+\cdots+(a_n-a_{n-1})\\
=&a_1+\displaystyle \sum_{k=1}^{n-1}(a_{k+1}-a_{k})\left(=a_1+\displaystyle \sum_{k=2}^{n}(a_k-a_{k-1})=a_1+\displaystyle \sum_{k=0}^{n-2}(a_{k+2}-a_{k+1})\right)\\
=&a_1+\displaystyle \sum_{k=1}^{n-1}b_k
\end{align*}

とくに一行目!二行目は上のように与えられた問題に応じて調整して作る.一番有名な三行目はもはやオマケみたいなもの,というわけです.したがって結果的に,覚えるべきは一行目のみですが,しかしこれは「目的の項\(a_n\)に行きつくまでにはそこまでの差を次々と足し加えればいい」という至極アタリマエな事実に過ぎず,その意味でこれはもはや「覚える」という意識すら必要なくなります.

このように,「結果を覚える」だけでなく,その成り立ちまで含めて理解しておく,つまり単純記憶ではなく理屈によって知識を保持しておくと,余計な記憶をせずに済みますし,なにより自信をもって解答を記述できます.その意味で,天下り的に与えれらた見かけ上の結果だけを貰って満足するのではなく,論理を頼りに根っこの方を追いかけて,そのリクツを知ろうとする姿勢は大事だと思います.「結果を覚えるだけ」の勉強に比べ,一見遠回りですが,そんな姿勢は結果的にはより汎用性のある力に繋がりますから.

数学的帰納法

前回の「任意」について思い出したことをひとつ.

次のような命題の証明について考えてみます.\(p(n)\)は条件,\(n\)を自然数とします.

\[\forall n~p(n) \tag{\(\ast\)}\]

この命題は,
\[\text{どんな\(n\)についても\(p(n)\)が真である}\]
ということですから,
\[p(1),~p(2),~p(3),~p(4),~\cdots~\text{が真である}\]
ことを証明する,ということです.(これが目標).これを証明するには,どうすればよいかを考えます.

まず,\[p(1)\text{が真である}\tag{A}\]ことを示します.続いて,\[p(2),p(3),\cdots \text{が真である}\]ことも同様に示していけばよい・・・と言いたいところですが,当然,無限回の考察は現実的には不可能です。そこで,天下りですが次の命題を考えます.

\[p(n) \Longrightarrow p(n+1)\tag{B}\]

この命題は,
\[\forall n[p(n) \longrightarrow p(n+1)]\]
すなわち,
\[\text{すべての\(n\)について\(p(n) \rightarrow p(n+1)\)が成り立つ}\]
ということですから,\(n=1,2,3,\cdots\)と代入して

\[
\begin{cases}
&\text{\(p(1) \rightarrow p(2)\)が成り立つ}\\
&\text{\(p(2) \rightarrow p(3)\)が成り立つ}\\
&\text{\(p(3) \rightarrow p(4)\)が成り立つ}\\
&\cdots
\end{cases}\tag{B’}
\]

と言い換えられることになります.この命題(B)(すなわち(B’))が証明できたとしましょう.そのとき,どのようなこことがわかるか,ご利益をみてみます.

「\(p(1) \rightarrow p(2)\)が成り立つ」について見てみます.真理値表
\(p(1) \rightarrow p(2)\)が真となる行に着目すると,次の①②③の3通りの状況が考えられます.


しかし,\(p(1)\)が真であることは既に(A)で確認済みなので,\(p(1)\)の列が偽となる②と③の状況は起こり得ず,結局①の状況しかありえません。この①の行を眺めると,\(p(2)\)も真であることが分かります.これで,\(p(1)\)と\(p(2)\)が真であることがわかりました.

同様に考えて,
「\(p(2) \rightarrow p(3)\)が成り立つ」ことから,\(p(3)\)も真となります.
「\(p(3) \rightarrow p(4)\)が成り立つ」ことから,\(p(4)\)も真となります.
「\(p(4) \rightarrow p(5)\)が成り立つ」ことから,\(p(5)\)も真となります.

となり,結局,\[p(1),~p(2),~p(3),~p(4),~\cdots~\text{が真である}\]であること,すなわち冒頭の命題\[\forall n~p(n) \tag{\(\ast\)}\]が証明されました.命題(B)を示すご利益は,ここにあったというわけです.

以上をまとめると,\((\ast)\)を証明するためには,命題(A)かつ(B),すなわち\[p(1) \land (p(n) \Rightarrow p(n+1))\]
を確認すればよい,ということがわかります.すなわち,

数学的帰納法\[p(1) \land \left(p(n) \Rightarrow p(n+1)\right) \Longrightarrow \forall n~p(n)\]

が言えることになります.これを数学的帰納法といいます.

ちなみに教科書では,「任意(\(\forall\))」を含む主張(述語論理)を頑なに扱わないため,この数学的帰納法を扱う際も

数学的帰納法を用いて,次の等式を証明せよ.\[1+2+3+\cdots+n=\frac{1}{2}n(n+1)\]

出典:高等学校 数学Ⅱ 数研出版

 

という,本来あるべき「\(\forall\)」「任意の」「すべての」という記述のない主張になっています.しかし,上で見たように,ここでは「任意の」「すべての」が主張の根幹であって,それを書かなければ何をさせたいのか,何をすべきなのかそのアウトラインが全然見えてこないと思うのです.だから,ここは

数学的帰納法を用いて,任意の自然数\(n\)に対して次の等式が成り立つことを証明せよ.\[1+2+3+\cdots+n=\frac{1}{2}n(n+1)\]

と出題すべきだと僕は思う.これを意図しつつも書いていないということは「空気読めよ」ってことなんでしょうか(これとかもそう…!).でも初めて学ぶ高校生ががそんなことわかりますかね….任意だのなんだの考えずにとりあえず「型」通りにやれってことかな?まあ,たしかにそっちの方が「あたりさわりなく」できるタイプは量産できるかもしれませんが.教科書のこういうところに個人的に?と思ってしまいます.

使おう,位置ベクトル

位置ベクトルとは,「始点が原点であるようなベクトル」のことです.

平面上の任意の点\(\mathrm{A}\)に対して,ベクトル\(\overrightarrow{\mathrm{OA}}=\boldsymbol{a}\)をその位置ベクトルという.ただし\(\mathrm{O}\)は座標の原点である.

松坂和夫「線形代数入門」岩波書店

 

なぜ「始点が原点である」だけで「位置ベクトル」なんて名前をつけてまで差別化するのでしょうか.それは,始点が原点にあるがゆえに,ベクトルの成分とベクトルの先っぽ(終点)が指し示す点の座標が一致するからです.例えば,点\(\mathrm{P}\)の座標が\((2,1)\)であるならば,位置ベクトル\(\overrightarrow{\mathrm{OP}}\)の成分は\(\left(\begin{array}{c} 2 \\ 1 \\ \end{array} \right)\)だし,逆に位置ベクトル\(\overrightarrow{\mathrm{OP}}\)の成分が\(\left(\begin{array}{c} 2 \\ 1 \\ \end{array} \right)\)ならば点\(\mathrm{P}\)の座標は\((2,1)\)です.単純なことですが,位置ベクトルにおいてはこの性質-座標とベクトルが同一視できること-が極めて重要です.

※注意1 ベクトルの成分を縦に書いたものを「列ベクトル(または縦ベクトル)」と呼びます.他方,ベクトルの成分を横に書いたものを(高校教科書での記法)「行ベクトル(横ベクトル)」とよびます.どちらも同じものですがベクトルの成分を書くときは高校段階であっても行ベクトルではなく列ベクトルで表記した方がいいでしょう.どうせ大学へ行けば列ベクトル表記の方がむしろ当たり前になりますし,高校段階であってもそれが「成分」なのか「座標」なのかを意識するためにベクトル(の成分)は横,座標は縦,と区別して書くべきです.また列ベクトルだと成分計算がし易いという利点もあります.テスト・模試等でも列ベクトルを用いても大丈夫です.減点されることは絶対にありえませんから.

※注意2 問題によっては「点\(A\)に関する位置ベクトルを…」といい,始点を\(A\)などととることがあります.その場合には,「点\(A\)を自前で設定した座標系の原点」と考えればいいだけです.

位置ベクトルをこのように「始点を原点にとったときのベクトル;矢印の終点が指し示す座標」と見なせば,次のような問題も容易に発想できます.

半径の円\(a\)の円が\(x\)軸上を滑ることなく回転するとき,円上の定点\(\mathrm{P}\)の描くサイクロイドの媒介変数表示を求めよ.ただし,点\(\mathrm{P}\)の最初の位置を原点\(\mathrm{O}\),円の中心の最初の位置を\((0,a)\)とする.

どのような状況なのかイメージするは,言葉で説明するより図を見た方が早いでしょう.

この赤線上の点\(\mathrm{P}\)の座標を求めることを考えます.欲しいものは点\(\mathrm{P}\)の座標なわけですが,『点\(\mathrm{P}\)の座標=\(\overrightarrow{\mathrm{OP}}\)の成分』でしたから,位置ベクトル\(\overrightarrow{\mathrm{OP}}\)を求めることにします.


ベクトルなのだから,ベクトルの和の定義により,下図のように\[\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OH}}+\overrightarrow{\mathrm{HC}}+\overrightarrow{\mathrm{CP}}\]と分解できます.

したがって\(\overrightarrow{\mathrm{OH}},~\overrightarrow{\mathrm{HC}},~\overrightarrow{\mathrm{CP}}\)をそれぞれ求めればよい.

まず\(\overrightarrow{\mathrm{OH}}\)から.

このベクトルは始点が既に原点にありますから,位置ベクトル,すなわちその成分と終点が指し示す座標が一致しているはずです.したがって\(\overrightarrow{\mathrm{OH}}\)の終点が指し示す座標を調べればよい.\(\mathrm{OH}=\text{孤}\mathrm{PH}\)であることに注意すると(「滑らずに」転がしたんだから!右図参照),\(\mathrm{OH}=a\theta\).したがって点\(\mathrm{H}\)の座標は\((a\theta,0)\)で,(座標と成分が対応するから)\(\overrightarrow{\mathrm{OH}}\)の成分は\(\left(\begin{array}{c} a\theta \\ 0 \\ \end{array} \right)\)となります.

次に\(\overrightarrow{\mathrm{HC}}\).

始点が原点にあれば,そのまま終点が指し示す座標を読めばいいのですが,これは始点は原点ではありませんね.しかしベクトルは向きと大きささえ変えさえしなければ自由に動かせるのでしたから,始点を原点にとってから,その終点の座標を読めばよいでしょう.始点を原点にとったときのベクトルの終点が指し示す座標は\((0,~a)\)ですから,そのベクトルの成分は\(\overrightarrow{\mathrm{OH}}\)の成分は\(\left(\begin{array}{c} 0 \\ a \\ \end{array} \right)\)となります.

最後に\(\overrightarrow{\mathrm{CP}}\).

やはり始点を原点にとってから,その終点の座標を読みましょう.始点を原点にとったときのベクトルの終点が指し示す座標は
\begin{align*}
&(a\cos\left(-\left(\frac{\pi}{2}+\theta\right)\right),~a\sin\left(-\left(\frac{\pi}{2}+\theta\right)\right))\\
=&(a\cos\left(\frac{\pi}{2}+\theta\right),~-a\sin\left(\frac{\pi}{2}+\theta\right))\\
=&(-a\sin \theta,~-a \cos \theta)
\end{align*}
ですから,求めるベクトルの成分は\(\left(\begin{array}{c} -a\sin \theta \\ -a \cos \theta \\ \end{array} \right)\)となります.

以上により,
\begin{align*}
\overrightarrow{\mathrm{OP}}&=\overrightarrow{\mathrm{OH}}+\overrightarrow{\mathrm{HC}}+\overrightarrow{\mathrm{CP}}\\
&=\left(\begin{array}{c} a\theta \\ 0 \\ \end{array} \right)+\left(\begin{array}{c} 0 \\ a \\ \end{array} \right)+\left(\begin{array}{c} -a\sin \theta \\ -a \cos \theta \\ \end{array} \right)\\
&=\left(\begin{array}{c} a(\theta-\sin \theta) \\ a(1 – \cos \theta) \\ \end{array} \right)\\
\end{align*}

(くどいようですが)位置ベクトルの成分とその終点が指し示す座標は対応しているのですから,結局,
\[
\begin{eqnarray}
\begin{cases}
x = a(\theta-\sin \theta) & \\
y = a(1 – \cos \theta) &
\end{cases}
\end{eqnarray}
\]

が得られたことになります.

位置ベクトルについて強調すべきはその定義「始点が原点であるようなベクトル」であり,ゆえに,「ベクトルを座標と見なせる」点だと思うのですが,教科書はそこが強調されていない.僕はかつて予備校でこれを習いましたが,ベクトルが初めて「道具として役に立つ」と感じられたこと,そしてベクトルを座標とみなすという別の概念を同一視するという感覚が新鮮で嬉しかった記憶があります.実際,位置ベクトルを用いるとカージオイドやエピサイクロイドなどの他の曲線もまったく同様に媒介変数表示できますし,また数学Ⅲで学ぶ複素数平面においても有用です(例によって教科書では位置ベクトルを用いた説明などしてはくれません).教科書を機械的・天下り的になぞるのもひとつの学習法ではありますが,こういったことを学ぶのもまた大事です.

ついでながら.教科書は「誤り・誤植がほとんどない」という意味においては最も信頼できる本のひとつだと思います.が,しかし,「誤りがないこと=最善」であるとは限りません.教科書と違う考え方・解法というものに抵抗を感じる人も少なくないと思いますが,食わず嫌いせずに興味をもって身に付けてみましょう.きっともう一皮むけますから.

もっと積極的に使おうぜ,位置ベクトル.